Lecture 12: Pseudorandom Functions

1. PRGs & Encryption
2. PRF Definition
3. Adaptive Adversary
4. PRF Construction & Proof

1. PRGs & Encryption

Random $s_0 \xrightarrow{\text{long, random-looking}} R = r \cdot s_i$

Use now, e.g. as OTP

Seed to get pseudorandom string later

\[
\begin{align*}
\text{Alice} & \quad s_0 = s \\
(1, m_1 \oplus r_1) & \\
(2, m_2 \oplus r_2) & \\
\vdots & \\
(i, m_i \oplus r_i) & \\
\end{align*}
\]

We want: On input s, i, compute r_i in time that is $\text{poly}(|s|, \log i)$.

2. PRF Definition

Def. (in progress). $F : \{0, 1 \}^k \times \{0, 1 \}^k \rightarrow \{0, 1 \}^k$

is a pseudorandom function if \forall ppt oracle TMs A,

$|\mathbb{E}_{F, A}(k) - \mathbb{E}_{R, A}(k)| \leq \nu(k)$ for negligible ν.

Recall: $\gamma_{F,A}(k) = \Pr[s \leftarrow \{0,1\}^k ; b' \leftarrow A(1^k) : b' = 0]$

$\text{TM } F:$

```
   s
state controls
   F(s, i)
   i
```

Query tape

```
i
F(s, i)
   ... work tape
```

$\text{TM } A:$

```
state controls
   ...
```

work tape

Also: $\gamma_{R,A}(k) = \Pr[R \leftarrow \{ \text{all functions} \} ; b' \leftarrow A(1^k) : b' = 0]$

$\text{TM } R:$

```
a_1\ a_2\ ...
state controls
   a_n
i_1\ a_1\ ...
i_n\ a_n
```

work tape

random tape

Query tape

```
...
i_n\ a_n
```

$\text{TM } A:$

```
state controls
   ...
```

work tape
A random function \(R \) can be described by a table:

\[
\begin{array}{c|c}
0 & \text{[random } k \text{ bits for } R(0)] \\
1 & \text{[random } k \text{ bits for } R(1)] \\
\vdots & \vdots \\
2^k - 1 & \text{[random } k \text{ bits for } R(2^k - 1)] \\
\end{array}
\]

\(2^k \cdot k \) bits to describe \(R \)

We can think of breaking a PRF as distinguishing between two experiments:

- \(F \) experiment
 - \(x \)
 - \(F_x \)
 - \(s \)
 - \(F_s(x) \)
 - \(U \)

- \(R \) experiment
 - \(x \)
 - \(R \)
 - \(r \), completely random but well-defined for \(x \)
 - \(U \)

From \(U \)'s perspective, its oracle looks like a gnome in a box. \(U \) wants to determine whether the gnome is computing \(F_s \) or \(R \).

3. Adaptive Adversary

\(U \) can query its oracle/gnome polynomially many times, and can do so adaptively.

Suppose we have \(F \) s.t. \(F(s, x) = s \circ F'(s_2, x) \), where \(s = s_1(s) s_2 \).

By asking \(2^k \) questions, we can check for \(s_1 \) in front. So \(F \) cannot be a PRF.

Note that \(G(s) = s \circ G'(s_2) \) is a PRG if \(G' \) is a PRG.

More examples:

- \(F(s, x) = F'(s, x) \circ F'(s_2, x_2) \)
- \(F(s, x) = F'(s, 0^k) \)
- \(F(s, x) = \begin{cases}
F'_s(x) & \text{if } x \neq F'_s(0^k) \\
0^k & \text{if } x = F'_s(0^k)
\end{cases} \)
4. PRF Construction & Proof

GGM PRF from PRG $G_i : \{0, 1^k \rightarrow \{0, 1\}^{2^k}$

$G_i(s) = G_{i-1}(s) \oplus G_1(s)$

k bits \hspace{1cm} k bits \hspace{1cm} k bits

\cdots

$S_0 = G_0(s_0)$

$S_1 = G_1(s_0)$

$S_{u+1} = G_{u+1}(S_u, \ldots, S_0)$

for $u = u_1, \ldots, u_k$

Observation: To compute S_x for k-bit x, we only need to compute S_{x_i} where x_i is the i-bit prefix of x.

$S_{x_i} = G_i^{i^{\text{th}} \text{ bit of } x}(S_{x_{i-1}})$

The PRF $F_k(x) = S_x$ is computed iteratively according to the observation.

Alice

F_{sen}

$(x, m \oplus F_{\text{sen}}(x))$

F_{auth}

Bob

F_{sen}

F_{auth}

Eve

$(x_i \text{ altered } c)$
