Chapter 2
Integer Programming

Paragraph 2
Branch and Bound
What we did so far

- We studied linear programming and saw that it is solvable in P.
- We gave a sufficient condition (total unimodularity) that simplex will return an integer solution.
 - Shortest Path
 - Minimum Spanning Tree
 - Maximum Flow
 - Min-Cost Flow
- How can we cope with general integer programs?
Tree Search

- As an example, assume we have to solve the Knapsack Problem.
- Recall that there are 2^n possible combinations of knapsack items.
- The brute-force approach to solve the problem is to enumerate all combinations, see which ones are feasible, and which one of those achieves maximum profit.
- A systematic way of enumerating all solutions is via backtracking.
Tree Search

- Assume we order the variables x_1, \ldots, x_n.
- A recursive way of enumerating all solutions is to set x_1 to 0 first and to recursively enumerate all solutions for $KP(x_2, \ldots, x_n, p, w, C)$. Then we set x_1 to 1 and enumerate all solutions for $KP(x_2, \ldots, x_n, p, w, C-w_1)$.
- This procedure yields to a search tree!
Tree Search

\[x = (1,0,0)^T \]
Combinatorial Explosions

- Enumerating all possible solutions is of course not feasible when there are too many items.
- What is “too many”?
 - 500? 200? 100? 50? 10?
 - Take a guess!
- Assume we can investigate 1 solution per cpu cycle at a rate of 10 GHz (that’s 10 billion per second). Then, enumerating all Knapsacks with 60 items takes more than 85 years!
- This effect is called a combinatorial explosion.
- If \(NP \neq P \), it cannot be avoided. However, we can aim at pushing the intractable instance sizes as far as possible – far enough to solve real-world instances. This is what combinatorial optimization is all about!
Implicit Enumeration

- We cannot afford to enumerate all combinations.
- We must try to enumerate the overwhelming part of all combinations implicitly!
- The only way to do this is by intelligent inference.
 - It is usually easy to find a first solution.
 - The core question to ask for an optimization problem is: Can we achieve a better solution?
 - Answering this question is of course NP-complete.
 - Consequently, we have to try to estimate intelligently.
Relaxations

• We can achieve an upper bound on an optimization problem like Knapsack by computing an optimal solution over a larger set of feasible solutions.

• We can allow more solutions by getting rid of some constraints - hopefully in such a way that the relaxed problem is easier to solve.

• This approach is generally called a relaxation.

• The milder the effect of a relaxation on the objective value, the better our estimate!
Linear Relaxation

- The most commonly used relaxation consists in dropping the constraint that variables be integer.
- In Knapsack for instance, we replace $x_i \in \{0,1\}$ by $0 \leq x_i \leq 1$.
- Then, optimizing the relaxed problem calls for solving a linear program – and we know how to optimize LPs quickly! 😊
Relaxations

• What does a relaxation give us?
 – **Dominance**: If the relaxation value is lower (for minimization: greater) or equal than the best known solution
 ⇒ All solutions with the current prefix are sub-optimal and need not be looked at at all!
 – **Optimality**: If the relaxation returns a feasible solution for our original problem
 ⇒ This solution dominates all other feasible solutions, they need not be looked at at all!
 – **Infeasibility**: If the relaxation is infeasible
 ⇒ There exists no feasible solution with the current prefix, all such combinations need not be looked at at all!

• In all these cases, we are not going to expand the search tree below the current node further ⇒ We **prune** the search!
Example

- Knapsack Instance
 - Maximize
 - $9x_1 + 3x_2 + 5x_3 + 3x_4$
 - such that
 - $5x_1 + 2x_2 + 5x_3 + 4x_4 \leq 10$
 - $x_1, x_2, x_3, x_4 \in \{0, 1\}$

- LP Relaxation
 - Maximize
 - $9x_1 + 3x_2 + 5x_3 + 3x_4$
 - such that
 - $5x_1 + 2x_2 + 5x_3 + 4x_4 \leq 10$
 - $0 \leq x_1, x_2, x_3, x_4 \leq 1$
Example

\[x_1 \leq 0 \quad \text{and} \quad x_1 \geq 1 \]

- \[x_2 \]
- \[x_3 \]
- \[x_4 \]
Branching Direction Selection

- In our general Branch-and-Bound scheme, we have some liberty:
 - Which node shall we look at next?
 - Which variable should we branch on?
- We would like to dive into the search tree in order to find a feasible solution (a lower bound) quickly.
- When diving, the question which node to pick next comes down to: which of the two son nodes shall we follow first?
Example
Branching Variable Selection

• In our general Branch-and-Bound scheme, we have some liberty:
 – Which node shall we look at next?
 – Which variable should we branch on?

• In order to have a chance of improving our upper bound, we need to branch on a fractional variable.

• In KP, there is exactly one.
Example

\[14.25 \quad x_4 \geq 1 \quad \text{node} \]

\[x_3 \leq 0 \]

\[15 \]

\[x_3 \geq 1 \]

\[14 \]

\[12 \quad x_4 \leq 0 \quad \text{node} \]
Liberties in B&B

• So far, we took the liberty to select our own branching values and variables.
 – Value selection is a special case of node selection in depth first search.
 • The way how we traverse the search tree is generally determined by our search strategy.
 – Variable selection is a special case of branching constraint selection.
 • Very many different ways to partition the search space are possible.
Search Strategies

• When choosing the next node, we would like:
 – to find a near optimal solution quickly (lower bound improvement in maximization)
 – not to jump too much to make use of incremental data-structures and keep the memory requirements in limits.
Search Strategies

- Depth First Search
 - Finds feasible solutions quickly.
 - Is very memory efficient.
 - Can easily get stuck in sub-optimal parts of the search space.

- Best First Search
 - Look at the node with best relaxation value next.
 - Is provably optimal in the sense that it never visits a node that could be pruned otherwise.
 - A lot of jumping is necessary and memory requirements are prohibitively large (often search degenerates to breadth first search).
Search Strategies

- Depth First Search with Best Backtracking
 • Is a mix of both depth and best first search: perform depth first search until a leaf is found, then backtrack to the node with best relaxation value and so on.
 • Much less jumping than best first search.
 • Is more memory efficient than best first search, but less than DFS – could still be very memory intensive.

- Least Discrepancy Search
 • Follow DFS with heuristic branching direction selection. Investigate leaves in order of increasing discrepancy wrt that heuristic.
 • Memory requirements are within limits.
 • Often finds good solutions early in the search.
Branching Constraint Selection

• When partitioning the search space, we would like:
 – to reduce the relaxation value as quickly as possible (upper bound improvement in maximization)
 – to avoid to double our workload which can happen for example when choosing the wrong branching variable

• The easiest way to partition the search is by branching on one variable.
Branching Constraint Selection

- **Unary Branching Constraints**
 - Choose the variable which has a fractional part closest to $\frac{1}{2}$.
 - Try to estimate how much enforcing the integrality of a variable will cost at least – degradation method.
 - Follow user-defined priorities.
 - Choose a random variable and combine with restarts.

- Empirically, we prefer balanced search trees over degenerated branches.
Branching Constraint Selection

- In some cases, unary branching constraints cannot achieve balance:
 - $\sum x_i = 1, x_i = 1$ has big, $x_i = 0$ almost no effect!

- Special Ordered Sets
 - SOS-Branching Idea: $\sum_{i \in I} x_i = 1$ or $\sum_{i \notin I} x_i = 1$.
 - SOS type 1
 - An ordered set of variables, where at most one variable may take on a nonzero value.
 - SOS type 2
 - An ordered set of variables, where at most two variables may take on nonzero values, and if two variables are nonzero, they must be adjacent in the set.
 - SOS type 3
 - A set of 0-1 variables only one of which may be selected to have the value 1, the other variables in the set having the value 0.
Thank you!