Definition

The **conditional probability** that event E occurs given that event F occurs is

$$
Pr(E \mid F) = \frac{Pr(E \cap F)}{Pr(F)}.
$$

The conditional probability is only well-defined if $Pr(F) > 0$.

- By conditioning on F we restrict the sample space to the set F.
- $Pr(E \mid F)$ defines a proper probability function on the sample space F.
Bayes’ Law

Theorem (Bayes’ Law)

Assume that E_1, E_2, \ldots, E_n are mutually disjoint sets such that $\bigcup_{i=1}^{n} E_i = \Omega$, then

$$
\Pr(E_j \mid B) = \frac{\Pr(E_j \cap B)}{\Pr(B)} = \frac{\Pr(B \mid E_j) \Pr(E_j)}{\sum_{i=1}^{n} \Pr(B \mid E_i) \Pr(E_i)}.
$$
Application: Naive Bayes Classifier

Automatic classifications of objects to categories

- Junk mail filter
- Classify text documents into one of several subjects/topics - politics, business, sport, science, religion,....
- Classify to genres - "editorials", "movie-reviews", "news",....
- Classify opinions: like, hate, neutral,...
- Identify the language of a document: English, French, Chinese,...
- recommendation systems
- ...

...
Bayes Classifier

- We have a training set of classified documents.
- We assume that the category of a document can be deduced from the words used in the document.
- **Training Phase:** Learn from the training set the conditional probabilities that a given word appears in a document of a given category - *Supervised learning*
- **Classification Case:** Compute the conditional probability that a new document belongs to a given category conditioned on the words that appear (or don’t appear) in the document.
The "bag of words" model

- A document is represented by the set of words in the document.
- We ignore locality relation and number of occurrences of words.
- We clean the documents by removing HTML commands, stop words, "s"'s and "ing"'s, etc. ("tokenizing"), so we are left with the keywords of the document.
Bayes Classifier

• X^d_w - the event "word w appears in document d". Classes $C_1, C_2, ...$

$$Pr(d \in C_i \mid \bigcap_{w \in d} X^d_w) = \frac{Pr((d \in C_i) \cap (\bigcap_{w \in d} X^d_w))}{Pr(\bigcap_{w \in d} X^d_w)}$$

$$= \frac{Pr(\bigcap_{w \in d} X^d_w \mid d \in C_i)Pr(d \in C_i)}{\sum_j Pr(\bigcap_{w \in d} X^d_w \mid d \in C_j)Pr(d \in C_j)}$$

• The classification of d is

$$\arg \max_{C_i \in \mathcal{C}} Pr(d \in C_i \mid \bigcap_{w \in d} X^d_w)$$

• It's the maximum likelihood category
The "Naive" assumption

- **Problem:** Assume n categories and a dictionary of k keywords. Need to estimate $k = n \cdot 2^k$ probabilities:

$$Pr(\bigcap_{w \in d} X_w^d \mid d \in C_i)$$

- **Practical solution:** Assume that occurrences of words are independent

$$Pr(\bigcap_{w \in d} X_w^d \mid d \in C_i) = \prod_{w \in d} Pr(X_w^d \mid d \in C_i)$$

$$Pr(d \in C_i \mid \bigcap_{w \in d} X_w^d) = \frac{\prod_{w \in d} Pr(X_w^d \mid d \in C_i) Pr(d \in C_i)}{\sum_j \prod_{w \in d} Pr(X_w^d \mid d \in C_j) Pr(d \in C_j)}$$

- **The classification of d is**

$$\arg\max_{C_i \in \mathcal{C}} Pr(d \in C_i \mid \bigcap_{w \in d} X_w^d)$$
Naive Bayes Classifier

Using the training data:

- For each category $C \in C$ and keyword w we compute

$$Pr(\text{page includes } w \mid \text{page in } c) = \frac{|\{d \mid d \in C \cap w \in d\}|}{|\{d \mid d \in C\}|}$$

- For each category $C \in C$, compute

$$Pr(\text{page in } C) = \frac{|\{d \mid d \in C\}|}{|\{\text{all pages}\}|}$$
Naive Bayes Classifier

• We are looking for the category C_i^* that maximizes

$$Pr(d \in C_i \mid \bigcap_w X_w^d) = \frac{\prod_w Pr(X_w^d \mid d \in C_i)Pr(d \in C_i)}{\sum_j \prod_w Pr(X_w^d \mid d \in C_j)Pr(d \in C_j)}$$

• We only need to consider the nominators. The classification of d is

$$\arg \max_{C_i \in C} Pr(d \in C_i \mid \bigcap_w X_w^d) =$$

$$\arg \max_{C_i \in C} \prod_w Pr(X_w^d \mid d \in C_i)Pr(d \in C_i)$$
Two technical problems

- **Underflow prevention**: Multiplying lots of probabilities can result in very small quantities and floating-point underflow.
- **Solution**: We do all computations in log’s. The classification of \(d \) is

\[
\arg\max_{C_i \in \mathcal{C}} \Pr(d \in C_i \mid \cap_w X^d_w) =
\]

\[
\arg\max_{C_i \in \mathcal{C}} \left[\log \Pr(d \in C_i) + \sum_w \log \Pr(X^d_w \mid d \in C_i) \right]
\]
Zero probability events: What if \(w \in d \) but we have seen no training documents in category \(C \) with keyword \(w \)?

In that case \(Pr(X_w^d \mid d \in C_i) = 0 \), cannot take the log

Zero probabilities cannot be conditioned away, no matter the other evidence!

Solution: Smoothing

\[
Pr(X_w^d \mid C) = \frac{|\{d \mid (d \in C) \cap (w \in d)\}| + 1}{|\{d \mid d \in C\}| + k}
\]

No zero probability events.
Naive Bayes Classifier Algorithm

Training phase: \(TD\) set of classified documents, \(n\) categories.

- For each category \(C \in \mathcal{C}\) and keyword \(w\) compute

 \[
 Pr(\text{page includes } w | \text{ page in } C) = \frac{\left|\{d \mid d \in C \cap w \in d\}\right| + 1}{\left|\{d \mid d \in C\}\right| + k}
 \]

- For each category \(C \in \mathcal{C}\), compute

 \[
 Pr(\text{page in } C) = \frac{\left|\{d \mid d \in C\}\right|}{\left|TD\right|}
 \]

- Store \(n + nk\) probabilities.

To **classify** a new document \(d\), compute

\[
\arg \max_{C_i \in \mathcal{C}} \left[\log Pr(d \in C_i) + \sum_{w \in d} \log Pr(X_w^d \mid d \in C_i) \right]
\]

Execute \(O(n(|d| + 1))\) operations