CS145: Lecture 8 Outline

- Variance of Sums of Random Variables
- Cumulative Distribution Functions
- Limits and Continuous Variables
The variance is the expected squared deviation of a random variable from its mean (the following definitions are equivalent):

\[
\text{Var}[X] = E[(X - E[X])^2] = \sum_{x \in \mathcal{X}} (x - E[X])^2 p_X(x)
\]

\[
\text{Var}[X] = E[X^2] - E[X]^2 = \left[\sum_{x \in \mathcal{X}} x^2 p_X(x) \right] - \left[\sum_{x \in \mathcal{X}} x p_X(x) \right]^2
\]

The variance is always non-negative:

\[
\text{Var}[X] \geq 0 \text{ because } (x - E[X])^2 \geq 0 \text{ for all } x.
\]

By definition, the standard deviation is the square root of the variance:

\[
\sigma_X = \text{Std}[X] = \sqrt{\text{Var}[X]}
\]
A geometric random variable X has parameter p, countably infinite range:

$$p_X(k) = (1 - p)^{k-1}p$$

$X = \{1, 2, 3, \ldots\}$

Memoryless: For any integer $c > 0$, if I observe that $X > c$, then $Y=X-c$ has same geometric PMF:

$$p_{X-c}(k \mid X > c) = (1 - p)^{k-1}p, \quad k = 1, 2, \ldots$$

Compute second moment via two cases:

$$E[X^2] = p E[X^2 \mid X = 1] + (1 - p) E[X^2 \mid X > 1]$$

$$E[X^2] = p + (1 - p)E[(X + 1)^2]$$

$$E[X^2] = \frac{2 - p}{p^2}$$
A geometric random variable X has parameter p, countably infinite range:

$$p_X(k) = (1 - p)^{k-1}p$$

$$X = \{1, 2, 3, \ldots\}$$

The mean and variance of the geometric distribution then equal:

$$E[X^2] = \frac{2 - p}{p^2}$$

$$E[X] = \frac{1}{p}$$

$$\text{Var}[X] = \frac{1 - p}{p^2}$$
Sums of Independent Variables

- If $Z = X + Y$ and random variables X and Y are independent, we have
 \[E[Z] = E[X] + E[Y] \quad \text{Var}[Z] = \text{Var}[X] + \text{Var}[Y] \]
 For any variables X, Y.
 \[\text{Only for independent } X, Y. \]

- Interpretation: Adding independent variables increases variance
 \[\text{Var}[Z] \geq \text{Var}[X] \quad \text{and} \quad \text{Var}[Z] \geq \text{Var}[Y] \]

- The standard deviation of a sum of independent variables is then
 \[\sigma_Z = \sqrt{\sigma_X^2 + \sigma_Y^2} \quad \sigma_X = \sqrt{\text{Var}[X]}, \sigma_Y = \sqrt{\text{Var}[Y]}, \sigma_Z = \sqrt{\text{Var}[Z]} \]

- Identity used in proof: If X and Y are independent random variables,
 \[E[XY] = E[X]E[Y] \quad \text{if} \quad p_{XY}(x, y) = p_X(x)p_Y(y) \]
 This equality does not hold for general, dependent random variables.
A Bernoulli or indicator random variable X has one parameter p:

$$p_X(1) = p, \quad p_X(0) = 1 - p, \quad X = \{0, 1\}$$

For an indicator variable, expected values are probabilities:

$$E[X] = p$$

Variance of Bernoulli distribution:

$$\text{Var}[X] = E\left[(X - p)^2 \right] = p(1 - p)$$

$$E[X^2] = p$$

Fair coin ($p=0.5$) has largest variance.

Coins that always come up heads ($p=1.0$), or always come up tails ($p=0.0$), have variance 0.
Binomial Probability Distribution

- Suppose you flip \(n \) coins with bias \(p \), count number of heads
- A *binomial* random variable \(X \) has parameters \(n, p \):
 \[
p_X(k) = \binom{n}{k} p^k (1 - p)^{n-k}
\]
- If \(X_i \) is a Bernoulli variable indicating whether toss \(i \) comes up heads, then
 \[
 X = \sum_{i=1}^{n} X_i
 \]
- Then because tosses are *independent*:
 \[
 E[X] = np
 \]
 \[
 \text{Var}[X] = np(1 - p)
 \]
CS145: Lecture 8 Outline

- Variance of Sums of Random Variables
- Cumulative Distribution Functions
- Limits and Continuous Variables
Recall \textit{probability mass function} (PMF): \[p_X(x) = P(X = x) \]

The \textit{cumulative distribution function} (CDF) is the cumulative sum of the PMF: \[F_X(x) = P(X \leq x) = \sum_{k \leq x} p_X(k) \]

The CDF equals 0 below the range of X, 1 above the range of X, and is \textit{monotonically increasing}: \[F_X(x_2) \geq F_X(x_1) \text{ if } x_2 > x_1. \]

The CDF allows quick computation of the probability of \textit{intervals}: \[P(x_1 < X \leq x_2) = F_X(x_2) - F_X(x_1) \]
You flip n coins with bias p, count number heads.

A binomial *probability mass function (PMF)* has parameters n, p:

$$ p_X(k) = \binom{n}{k} p^k (1 - p)^{n-k} $$

where $X = \{0, 1, 2, \ldots, n\}$.

By definition, the binomial *cumulative distribution function (CDF)* equals

$$ F_X(x) = \sum_{k=0}^{\lfloor x \rfloor} \binom{n}{k} p^k (1 - p)^{n-k} $$

No simple closed form, evaluate numerically.
A geometric probability mass function (PMF) has parameter \(p \), countably infinite range:

\[
p_X(k) = (1 - p)^{k-1}p
\]

\[\mathcal{X} = \{1, 2, 3, \ldots\}\]

The geometric cumulative distribution function (CDF) then equals:

\[
F_X(x) = 1 - P(X > x) = 1 - (1 - p)^x
\]

Note that the CDF is strictly less than 1.0 for all finite \(x \), because the range is unbounded above.
Quantiles of Distributions

For $0 < p < 1$, the p-quantile of distribution of random variable X is the smallest x for which

$$F_X(x) \geq p$$

- The median is the 0.5-quantile. This is the “center” of the distribution, which sometimes (but not always) equals the mean.
- The 0.25-quantile and 0.75-quantile are sometimes called quartiles.
- Often we are interested in ”extreme” quantiles, which give the probabilities of rare events: $p = 0.9, 0.99, 0.999, \ldots$
 $p = 0.1, 0.01, 0.001, \ldots$
CS145: Lecture 8 Outline

- Variance of Sums of Random Variables
- Cumulative Distribution Functions
- Limits and Continuous Variables
Discrete Uniform Distribution

$p_X(x) = \frac{1}{n}$ if $a \leq x \leq b$

$n = b - a + 1$

$F_X(x) = \frac{\lfloor x \rfloor - a + 1}{n}$

if $a \leq x \leq b$
Take a discrete random variable uniformly distributed between 0 and $n-1$, and multiply by $1/n$ to get a variable taking values between 0 and 1.

What does this random variable approach as n becomes large?