The Birthday “Paradox”

Suppose there are m students in a class. What is the probability that at least two students in the class have the same birthday?

In a class of 70 students, this probability is about 99.87%
CS145: Lecture 1 Outline

- Sample spaces: Sets of possible outcomes
- Probability: Counting and the Discrete Uniform Law
- Example: The birthday paradox

Sample Spaces and Events
Every probabilistic model involves an underlying process, called the experiment, that will produce exactly one out of several possible outcomes. The set of all possible outcomes is called the sample space of the experiment, and is denoted by Ω. A subset of the sample space, that is, a collection of possible outcomes, is called an event. The probability law assigns to each event a nonnegative number $P(A)$ that encodes our knowledge or belief about the "likelihood" of the event occurring. The probability law must satisfy certain properties to be introduced shortly.

Figure 1.2: The main ingredients of a probabilistic model.

```
<table>
<thead>
<tr>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space $\Omega$ (Set of Outcomes)</td>
</tr>
<tr>
<td>Event A</td>
</tr>
<tr>
<td>Event B</td>
</tr>
</tbody>
</table>

Probability Law

$P(A)$ $P(B)$

A B

Events
```
flip a coin, roll a die, receive an email, take a picture, …

Elements of a Probabilistic Model

- The **sample space** Ω, which is the set of all possible outcomes of an experiment.

- The **probability law**, which assigns to a set A of possible outcomes (also called an **event**) a nonnegative number $P(A)$ (called the **probability** of A) that encodes our knowledge or belief about the collective “likelihood” of the elements of A. The probability law must satisfy certain properties to be introduced shortly.
A set is a collection of objects, which are elements of the set.

A set can be finite, \(S = \{1, 2, \ldots, n\} \). Cardinality (size): \(|S| = n\)

A set can be countably infinite:

\[
S = \{x \mid x = 2k + 1 \text{ or } x = -2k + 1, \ k \text{ integer}\} \\
= \{1, -1, 3, -3, 5, -5, \ldots\}.
\]

A set can be uncountable, \(S = \{x \mid x \in [0, 1]\} \).

A set can be empty \(S = \emptyset \).
Countable and Uncountable Infinite

Advanced topic not covered in homeworks or exams!

- A finite set is **countable**
- The set of natural numbers $\mathbb{N} = \{1, 2, 3, \ldots\}$ is countable
- A set S is countable if there is **injective** mapping from S to \mathbb{N}
- The set of all integers is countable $1, -1, 2, -2, 3, -3, \ldots$
- The set of all **rationales** is countable
The Set of All Rational numbers is Countable

Advanced topic not covered in homeworks or exams!

Source: www.homeschoolmath.net/teaching/rational-numbers-countable.php
The Set of Real Numbers is Uncountable

Advanced topic not covered in homeworks or exams!

- Write each number in binary
- If countable can be ordered in a list
- Change (complement) the i-th bit of the i-th number for all i ≥ 1
- The number in the diagonal doesn't appear in our list.

\[s_1 = 0000000000000... \]
\[s_2 = 1111111111111... \]
\[s_3 = 0101010101010... \]
\[s_4 = 1010101010101... \]
\[s_5 = 1101011010101... \]
\[s_6 = 0011011011010... \]
\[s_7 = 1000100100100... \]
\[s_8 = 0011001100110... \]
\[s_9 = 1100110011001... \]
\[s_{10} = 1101110010010... \]
\[s_{11} = 11010100100100... \]
\[\vdots \]

\[s = 10111010011... \]
Discrete vs. Continuous Spaces

- **Countable** sample space \rightarrow *discrete* probability model

- **Uncountable** sample space \rightarrow *continuous* probability model
• $x \in S$ - the element x is a member of the set S
• $x \notin S$ - the element x is not a member of the set S
• $\exists x$ - there exists x...
• \forall - for all elements x ...
• $T \subseteq S$ - $\forall x \in T$, $x \in S$
• $T \subset S$ - $\forall x \in T$, $x \in S$ AND $\exists x \in S$ such that $x \notin T$.
Sets: Combination & Manipulation

- A base set Ω, all sets are subsets of Ω
- Basic operations: for $S, T \subseteq \Omega$,
 - $S \cup T = \{x \mid x \in S \text{ or } x \in T\}$ ➤ union
 - $S \cap T = \{x \mid x \in S \text{ and } x \in T\}$ ➤ intersection
 - $\bar{S} = S^c = \{x \mid x \not\in S\}$ ➤ complement
- De Morgan’s laws:
 - $(S \cup T)^c = \bar{S} \cap \bar{T}$
 - $(S \cap T)^c = \bar{S} \cup \bar{T}$
Basic operations: for $S, T \subseteq \Omega$,

- $S \cup T = \{x \mid x \in S \text{ or } x \in T\}$
- $S \cap T = \{x \mid x \in S \text{ and } x \in T\}$
- $\overline{S} = S^c = \{x \mid x \notin S\}$

De Morgan’s laws:

- $(S \cup T)^c = \overline{S} \cap \overline{T}$
- $(S \cap T)^c = \overline{S} \cup \overline{T}$
- $(\bigcup_{i \in I} S_i)^c = \bigcap_{i \in I} \overline{S_i}$
- $(\bigcap_{i \in I} S_i)^c = \bigcup_{i \in I} \overline{S_i}$
Partitions of a Set

A set B is partitioned into n subsets if:

$$B_1 \cup B_2 \cup \cdots \cup B_n = B$$

$$B_i \cap B_j = \emptyset \text{ for any } i \neq j$$

mutually disjoint
The Sample Space

\[\Omega = \text{a set, or unordered “list”, of possible outcomes from some random (not deterministic) experiment} \]

“Omega”

The list defining the sample space must be:

- **Mutually exclusive**: Each experiment has a unique outcome.
- **Collectively exhaustive**: No matter what happens in the experiment, the outcome is an element of the sample space.
- **An art**: Choosing the “right” granularity, to capture the phenomenon of interest as simply as possible.

Modeling in science and engineering involves tradeoffs between accuracy, simplicity, & tractability.
A Finite Sample Space

You roll a tetrahedral (4-sided) die 2 times.

\[\Omega = \{(x, y) \mid x \in \{1, 2, 3, 4\}, y \in \{1, 2, 3, 4\}\} \]

- Formally, sample space is a set of \(4^2 = 16\) discrete outcomes
- Can also model outcome via *tree-based sequential description*
A Finite Sample Space

You toss a (2-sided) coin 10 times.

Two possible sample spaces for this experiment:
1. You record the number of times the coin comes up heads:
 \[\Omega = \{0, 1, 2, \ldots, 9, 10\} \]
2. You record the full sequence of head-tail outcomes:
 \[\Omega = \{H, T\}^{10} \text{ all } 2^{10} \text{ possible } H-T \text{ sequences} \]

Which is better? It depends on what you want to model:

Game 1: Receive $1 each time a head appears.

Game 2: Receive $1 per coin toss, up to and including the first head. Then receive $2 per coin toss, up to and including the second head. Then receive $4 per coin toss, up to and including the third head. More generally, dollar amount per toss is doubled with each head…
CS145: Lecture 1 Outline

- Sample spaces: Sets of possible outcomes
- Probability: Counting and the Discrete Uniform Law
- Example: The birthday paradox
The Discrete Uniform Law

Formalizes the idea of “completely random” sampling.

- Let all outcomes be equally likely
- Then,

\[P(A) = \frac{\text{number of elements of } A}{\text{total number of sample points}} \]

- Computing probabilities \(\equiv \) counting
- Defines fair coins, fair dice, well-shuffled decks
Uniform Law for a Finite Sample Space

You roll a tetrahedral (4-sided) die 2 times.

- Let every possible outcome have probability $1/16$
 - $P((X,Y) \text{ is } (1,1) \text{ or } (1,2)) =$
 - $P(\{X = 1\}) =$
 - $P(X + Y \text{ is odd}) =$
 - $P(\min(X,Y) = 2) =$
Events and Sets

Table 1: Event and Set Translations

<table>
<thead>
<tr>
<th>Event Language</th>
<th>Set Language</th>
<th>Set Notation</th>
<th>Venn Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>outcome space</td>
<td>universal set</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>event</td>
<td>subset of Ω</td>
<td>$A, B, C,$ etc.</td>
<td></td>
</tr>
<tr>
<td>impossible event</td>
<td>empty set</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>not A, opposite of A</td>
<td>complement of A</td>
<td>A^c</td>
<td></td>
</tr>
<tr>
<td>either A or B or both</td>
<td>union of A and B</td>
<td>$A \cup B$</td>
<td></td>
</tr>
<tr>
<td>both A and B</td>
<td>intersection of A and B</td>
<td>AB, $A \cap B$</td>
<td></td>
</tr>
<tr>
<td>A and B are mutually exclusive</td>
<td>A and B are disjoint</td>
<td>$AB = \emptyset$</td>
<td></td>
</tr>
<tr>
<td>if A then B</td>
<td>A is a subset of B</td>
<td>$A \subseteq B$</td>
<td></td>
</tr>
</tbody>
</table>
The Basic Counting Principle

Consider a process that consists of \(r \) stages. Suppose that:

(a) There are \(n_1 \) possible results for the first stage.

(b) For every possible result of the first stage, there are \(n_2 \) possible results at the second stage.

(c) More generally, for all possible results of the first \(i - 1 \) stages, there are \(n_i \) possible results at the \(i \)th stage.

Then, the total number of possible results of the \(r \)-stage process is

\[n_1 \cdot n_2 \cdot \cdots \cdot n_r. \]

Simple examples:

- Number of license plates with 3 letters and 4 digits =

- \(\ldots \) if repetition is prohibited =

The set of choices at each stage can depend on previous choices, as long as the number of choices at each stage is constant.
Permutations and Subsets

- **Permutations**: Number of ways of ordering \(n \) elements is:

\[
n(n - 1)(n - 2) \cdots 1 = \prod_{i=1}^{n} i = n!
\]

- Number of subsets of \(\{1, \ldots, n\} = \underbrace{2 \cdot 2 \cdots 2}_{n \text{ times}} = 2^n \)
Combinations

- \(\binom{n}{k} \): number of \(k \)-element subsets of a given \(n \)-element set

- Two ways of constructing an ordered sequence of \(k \) distinct items:
 - Choose the \(k \) items one at a time:
 \[n(n-1) \cdots (n-k+1) = \frac{n!}{(n-k)!} \] choices
 - Choose \(k \) items, then order them (\(k! \) possible orders)

- Hence:
 \[\binom{n}{k} \cdot k! = \frac{n!}{(n-k)!} \]
 \[\binom{n}{k} = \frac{n!}{k!(n-k)!} \]

- The number of total subsets:
 \[\sum_{k=0}^{n} \binom{n}{k} = 2^n \]
Pascal’s Triangle

\[\binom{n}{k} = \frac{n!}{k!(n-k)!} \]

\[\sum_{k=0}^{n} \binom{n}{k} = 2^n \]
Pascal’s Triangle

http://www.mathwarehouse.com/
Binomial Probabilities

If I toss a coin \(n \) times, what is the probability that I see \(k \) heads?

- \(n \) independent coin tosses
 - \(P(H) = p = \frac{1}{2} \)

- \(P(HTTHHH) = \)

- \(P(\text{sequence}) = p^\# \text{ heads} (1 - p)^\# \text{ tails} \)

\[
P(k \text{ heads}) = \sum_{k\text{-head seq.}} P(\text{seq.})
\]

\[
= (\# \text{ of } k\text{-head seqs.}) \cdot p^k (1 - p)^{n-k}
\]

\[
= \binom{n}{k} p^k (1 - p)^{n-k}
\]
CS145: Lecture 1 Outline

- Sample spaces: Sets of possible outcomes
- Probability: Counting and the Discrete Uniform Law
- Example: The birthday paradox
The Birthday “Paradox”

Suppose there are m students in a class. What is the probability that at least two students in the class have the same birthday?

In a class of 70 students, this probability is about 99.87%

Assumptions:
- Birthdays are equally likely to occur on any of $N=365$ days
- No dependence between birthdays of different students

Not completely true, but fairly accurate approximations.
The Birthday “Paradox”

- Sort students in arbitrary order (say, alphabetical by name)
- Define two events for student j in the list of m students:
 \[R_j \rightarrow \text{birthday } j \text{ is a repeat of some previous student} \]
 \[D_j \rightarrow \text{all of the first } j \text{ birthdays are distinct} \]

- Tree diagram of event probabilities for $N=365$ days:
The Birthday “Paradox”

- The probability that the first m birthdays are distinct is then:

$$P(D_m) = \left(1 - \frac{1}{N}\right) \left(1 - \frac{2}{N}\right) \cdots \left(1 - \frac{m-1}{N}\right) = \prod_{i=0}^{m-1} \left(1 - \frac{i}{N}\right)$$

- $R_j \rightarrow$ birthday j is a repeat of some previous student
- $D_j \rightarrow$ all of the first j birthdays are distinct

- Tree diagram of event probabilities for $N=365$ days:
The Birthday “Paradox”

- The probability that the first m birthdays are distinct is then:
 \[P(D_m) = \left(1 - \frac{1}{N}\right) \left(1 - \frac{2}{N}\right) \cdots \left(1 - \frac{m-1}{N}\right) = \prod_{i=0}^{m-1} \left(1 - \frac{i}{N}\right) \]

- We can also compute this probability by counting elements of the sample space of all N^m possible birthday patterns:
 \[\Omega = \{(b_1, \ldots, b_m) \mid b_i \in \{1, \ldots, N\}\} \]

- The number of birthday patterns with all pairs distinct:
 \[D_m = \{(b_1, \ldots, b_m) \mid b_i \neq b_j \text{ for all } i \neq j\} \]
 \[|D_m| = N(N-1)(N-2)\cdots(N-m+1) = \frac{N!}{(N-m)!} \]
The Birthday “Paradox”

- The probability that the first \(m \) birthdays are distinct:

\[
P(D_m) = \left(1 - \frac{1}{N}\right) \left(1 - \frac{2}{N}\right) \cdots \left(1 - \frac{m - 1}{N}\right) = \prod_{i=0}^{m-1} \left(1 - \frac{i}{N}\right)
\]

\[
P(D_m) = \frac{N!}{(N-m)!N^m} = \prod_{i=0}^{m-1} \left(\frac{N-i}{N}\right)
\]

- The number of \textit{birthday patterns with all pairs distinct}:

\[
D_m = \{(b_1, \ldots, b_m) \mid b_i \neq b_j \text{ for all } i \neq j\}
\]

\[
|D_m| = N(N-1)(N-2) \cdots (N-m+1) = \frac{N!}{(N-m)!}
\]
The Birthday “Paradox”

The probability that \(m \) birthdays on \(N \) days are distinct:

\[
P(D_m) = \left(1 - \frac{1}{N}\right) \left(1 - \frac{2}{N}\right) \cdots \left(1 - \frac{m-1}{N}\right) = \prod_{i=0}^{m-1} \left(1 - \frac{i}{N}\right)
\]

\[
1 - P(D_m)
\]

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0
10
20
30
40
50
60
70
80

\[1 - P(D_{23}) = 0.506\]

\(m \) (fixing \(N = 365 \))

\[
P(D_m) \leq \prod_{i=0}^{m-1} e^{-\frac{i}{N}} = e^{-\sum_{i=0}^{m-1} \frac{i}{N}} = e^{-\frac{m(m-1)}{2N}}
\]
The Birthday “Paradox”

The probability that \(m \) birthdays on \(N \) days are distinct:

\[
P(D_m) = \left(1 - \frac{1}{N}\right) \left(1 - \frac{2}{N}\right) \cdots \left(1 - \frac{m-1}{N}\right) = \prod_{i=0}^{m-1} \left(1 - \frac{i}{N}\right)
\]

FIGURE 3. Probabilities in the birthday problem. See the discussion after Example 5.

Probability that first repeated birthday is found with student \(j \)