Common Discrete Random Variables

Geometric For a geometric variable X with success probability $0 < q \leq 1$,

- $p_X(x) = (1 - q)^{x-1}q$, \(x = 1, 2, 3, \ldots \)
- $E[X] = \sum_{x=1}^{\infty} x p_X(x) = \frac{1}{q}$.
- $\text{Var}[X] = E[X^2] - E[X]^2 = \frac{1-q}{q^2}$.

Binomial For a binomial variable X with n trials and success probability $0 \leq q \leq 1$,

- $p_X(x) = \binom{n}{x} q^x (1-q)^{n-x}$, \(x = 0, 1, \ldots, n \).
- $E[X] = \sum_{x=0}^{n} x p_X(x) = nq$.
- $\text{Var}[X] = E[X^2] - E[X]^2 = nq(1-q)$.

Common Continuous Random Variables

Uniform For a random variable X that is uniformly distributed between a and b,

- $f_X(x) = \begin{cases} 1/(b-a), & \text{if } a \leq x \leq b. \\ 0, & \text{otherwise.} \end{cases}$
- $E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx = \frac{a+b}{2}$.
- $\text{Var}[X] = E[X^2] - E[X]^2 = \frac{(b-a)^2}{12}$.

Exponential For an exponential variable X with parameter λ, $P(X < 0) = 0$, and

- $f_X(x) = \lambda e^{-\lambda x}$, \(x \geq 0. \)
- $E[X] = \int_{0}^{\infty} x f_X(x) \, dx = \frac{1}{\lambda}$.
- $\text{Var}[X] = E[X^2] - E[X]^2 = \frac{1}{\lambda^2}$.

Normal For a normal or Gaussian variable X with mean μ and variance λ,

- $f_X(x) = \frac{1}{\sqrt{2\pi\lambda}} \exp \left\{ -\frac{(x-\mu)^2}{2\lambda} \right\}$.
- $E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx = \mu$.
- $\text{Var}[X] = E[X^2] - E[X]^2 = \lambda$.
Integrals and Derivatives

\[\int_a^b x^n \, dx = \frac{b^{n+1} - a^{n+1}}{n+1}, \]

\[\frac{d}{dx} x^n = nx^{n-1}. \]

\[\int_a^b \frac{1}{x} \, dx = \ln(b) - \ln(a) = \ln \left(\frac{b}{a} \right), \]

\[\frac{d}{dx} \ln(x) = \frac{1}{x}. \]

\[\int_a^b e^{cx} \, dx = \frac{1}{c} (e^{cb} - e^{ca}), \]

\[\frac{d}{dx} e^{cx} = ce^{cx}. \]