1950
Future Vision

2017 MWF 1PM
Computer Vision
Lena and Fabio
Examples: Controversy and Appropriateness

‘Lena’
Alexander Sawchuk @ USC, 1973

‘Fabio’
Deanna Needell @ Claremont McKenna, 2012
CV as a social good bad?
CV / ML ‘human factors’

• Computer vision / machine learning is a tool.
• Tools are used under real world constraints.
 • Time, money.

• Like any tool, CVML can be used for good and for bad.
• What good/bad is sometimes depends on your point of view.

• Can also be used advertently or inadvertently.
• With or without awareness of ‘human factors’
In the beginning, there was light.

Computer vision domain

- Eye
 - Optics
 - Dynamic range
 - Color
- Camera
 - Optics
 - Dynamic range
 - Color
- Digital processing
- Low-level features
 - Calibration
 - Geometric
 - Photometric
 - Radiometric
- Data collection
- Labeling
- Model fitting
- Recognition
- Classification
In the beginning, there was light.

Computer vision domain

Eye
- Optics
- Dynamic range
- Color

Camera
- Optics
- Dynamic range
- Color

Digital processing

Low-level features

Calibration
- Geometric
- Photometric
- Radiometric

Data collection

Model fitting

Recognition

Classification

Labeling
Light response curves

Eye Sensor:

Camera Sensor:

Canon 450D Quantum Efficiency

© Stephen E. Palmer, 2002
Light/reflectance output curves

250-500:1 contrast ratio (OLED = inf.)
6 / 8 / 10 bit dynamic range
3 / 4 additive primaries (RGB, rarely +yellow)
Defines a gamut

50-150:1 contrast ratio
??? dynamic range
4 subtractive primaries (CYMK)
Defines a gamut
We want:

Colors we see with our eyes in the world

=

Colors we see with our eyes in the reproduction

How do we calibrate these?
Time Warp: Film processing

http://www.picture-newsletter.com/kodak/
Kodak’s test input + output

• ‘Shirley cards’ – 1950s/60s

• Shirley was photographed hundreds of times by Kodak.

• One negative was processed as per Kodak specifications.

• A new unexposed negative + processed output was sent to each printer lab.

• Printer colors were calibrated on site to match the target Shirley card.

Circa 1960
Kodak’s test input + output

- ‘Shirley cards’ – 1950s/60s

- Any issues with this approach?

Circa 1960
Over time

- 1978: Filmmaker Jean-Luc Godard refuses to use Kodachrome film in Mozambique.

- 1980s: Chocolate and furniture manufacturers complain.

 - “Photograph the details of a dark horse in low light.”

Shirley card, 1996
1980s – adverts

The Four Tops!

Bill Cosby!

Some other issues here now too : (
What are the underlying problems?

• ...and how might we overcome them?

• Think-pair-share.
Issues

• Dynamic range: not enough!
• Color balance:
So digital fixes this, right?

• Well…

“The hardest part of being in a biracial relationship is taking a picture together.”
So digital fixes this, right?

...it’s a lot better.

- 14-bit sensors (≈ eye’s static range)
- High-dynamic range by combining low-dynamic range
- Digital post-processing for color balance
References

Canadian Journal of Communication:
Roth et al., Looking at Shirley, the Ultimate Norm: Colour Balance, Image Technologies, and Cognitive Equity
http://www.cjc-online.ca/index.php/journal/article/view/2196

https://priceonomics.com/how-photography-was-optimized-for-white-skin/
https://www.buzzfeed.com/syreetamcfadden/teaching-the-camera-to-see-my-skin/
Word of warning

• Around 2013/2014 there were a lot of articles about this issue.
• Many articles rewrite the same few sources.
• Most do not have a technical background, and sometimes technical issues are confused.

• ‘Take care.’
CV as making bank

- Intel buys Mobileye!
- $15 billion

- Mobileye:
 - Spin-off from Hebrew University, Israel
 - 450 engineers
 - 15 million cars installed
 - 313 car models
June 2016 - Tesla left Mobileye

- Fatal crash – car ‘autopilot’ ran into a tractor trailer.
 “What we know is that the vehicle was on a divided highway with Autopilot engaged when a tractor trailer drove across the highway perpendicular to the Model S. Neither Autopilot nor the driver noticed the white side of the tractor trailer against a brightly lit sky, so the brake was not applied.” – Tesla blog.

What computer vision problems does this sound like?
Tesla crash: how it happened

A preliminary investigation into 25,000 Tesla Model S cars has been opened after a driver of one of the vehicles was killed while operating in Autopilot mode in a crash in Williston, Florida. Here is how the fatal accident occurred according to authorities.

1. Tesla travels eastbound on US-27
2. A tractor-trailer on the westbound lane prepares to turn left
3. Tesla’s windshield strikes the underside of the trailer as the car passes underneath it
4. The car keeps going, veers off the road and hits a wire fence
5. After traveling across a field, the car strikes another wire fence
6. It passes through the fence and hits a utility power pole
7. It rotates and comes to a final rest

Diagram not to scale.
Sources: Florida Highway Patrol Troop; U.S. National Highway Traffic Safety Administration

C. Chan, 30/06/2016
June 2016 - Tesla left Mobileye

- Fatal crash – car ‘autopilot’ ran into a tractor trailer.
“What we know is that the vehicle was on a divided highway with Autopilot engaged when a tractor trailer drove across the highway perpendicular to the Model S. Neither Autopilot nor the driver noticed the white side of the tractor trailer against a brightly lit sky, so the brake was not applied.” – Tesla blog.

What computer vision problems does this sound like?

What HCI problems does this sound like?
Autosteer

Figure 11. Crash Rates in MY 2014-16 Tesla Model S and 2016 Model X vehicles Before and After Autosteer Installation.
Instagram filters

• Filters that brighten
• Filters that darken

• Filters can do anything!
Snapchat

@tequilafunrise

.@Snapchat wanna tell me why u thought this yellowface was ok??

“Anime inspired”
FaceApp

- Learning-based face transformations
FaceApp apologizes for building a racist AI

Posted 45 minutes ago by Natasha Lomas (scriptari)

2017/04/25

If only all algorithmic bias were as easy to spot as this: FaceApp, a photo-editing app that uses a neural network for editing selfies in a photorealistic way, has apologized for building a racist algorithm.

The app lets users upload a selfie or a photo of a face, and offers a series of filters that can then be applied to the image to subtly or radically alter its appearance — its appearance-shifting effects include aging and even changing gender.

The problem is the app also included a so-called “hotness” filter, and this filter was racist. As users pointed out, the filter was lightening skin tones to achieve its mooted “beautifying” effect. You can see the filter pictured above in a before and after shot of President Obama.

In an emailed statement apologizing for the racist algorithm, FaceApp's founder and CEO Yaroslav Goncharov told us: “We are deeply sorry for this unquestionably serious issue. It is an unfortunate side-effect of the underlying neural network caused by the training set bias, not intended behaviour. To mitigate the issue, we have renamed the effect to exclude any positive connotation associated with it. We are also working on the complete fix that should arrive soon.”
Dataset Bias
In the beginning, there was light.

Computer vision domain

- **Eye**
 - Optics
 - Dynamic range
 - Color

- **Camera**
 - Optics
 - Dynamic range
 - Color

- **Digital processing**
 - Low-level features
 - Calibration
 - Geometric
 - Photometric
 - Radiometric

- **Model fitting**
 - Recognition
 - Classification

Data collection

Labeling
Bias/variance trade-off

Bias = accuracy
Variance = precision
Unbiased Look at Dataset Bias

Torralba and Efros, CVPR 2011

“The authors would like to thank the Eyjafjallajokull volcano as well as the wonderful kirs at the Buvette in Jardin du Luxembourg for the motivation (former) and the inspiration (latter) to write this paper.”
Progression of dataset complexity

• COIL-100:

• 15 scenes: Out of the lab, backgrounds
• Caltech-101: Google-mined, single object in middle.
• LabelMe: Multiple objects, anywhere
• PASCAL VOC: More rigorous testing standards
• ImageNet: Internet-scale, real-world
Figure 1. Name That Dataset: Given three images from twelve popular object recognition datasets, can you match the images with the dataset? (answer key below)
CV plays name that dataset!
Figure 4. Most discriminative cars from 5 datasets
Measuring Dataset Bias

• Idea: cross-dataset generalization

• Train an object classifier on one dataset
• Test on the same object class on another dataset
• Observe performance as measure of bias
<table>
<thead>
<tr>
<th>task</th>
<th>Train on:</th>
<th>Test on:</th>
<th>SUN09</th>
<th>LabelMe</th>
<th>PASCAL</th>
<th>ImageNet</th>
<th>Caltech101</th>
<th>MSRC</th>
<th>Self</th>
<th>Mean others</th>
<th>Percent drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>"person" detection</td>
<td>SUN09</td>
<td></td>
<td>69.6</td>
<td>56.8</td>
<td>37.9</td>
<td>45.7</td>
<td>52.1</td>
<td>72.7</td>
<td>69.6</td>
<td>53.0</td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td>LabelMe</td>
<td></td>
<td>58.9</td>
<td>66.6</td>
<td>38.4</td>
<td>43.1</td>
<td>57.9</td>
<td>68.9</td>
<td>66.6</td>
<td>53.4</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>PASCAL</td>
<td></td>
<td>56.0</td>
<td>55.6</td>
<td>56.3</td>
<td>55.6</td>
<td>56.8</td>
<td>74.8</td>
<td>56.3</td>
<td>59.8</td>
<td>-6%</td>
</tr>
<tr>
<td></td>
<td>ImageNet</td>
<td></td>
<td>48.8</td>
<td>39.0</td>
<td>40.1</td>
<td>59.6</td>
<td>53.2</td>
<td>70.7</td>
<td>59.6</td>
<td>50.4</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>Caltech101</td>
<td></td>
<td>24.6</td>
<td>18.1</td>
<td>12.4</td>
<td>26.6</td>
<td>100</td>
<td>31.6</td>
<td>100</td>
<td>22.7</td>
<td>77%</td>
</tr>
<tr>
<td></td>
<td>MSRC</td>
<td></td>
<td>33.8</td>
<td>18.2</td>
<td>30.9</td>
<td>20.8</td>
<td>69.5</td>
<td>74.7</td>
<td>74.7</td>
<td>34.6</td>
<td>54%</td>
</tr>
<tr>
<td></td>
<td>Mean others</td>
<td></td>
<td>44.4</td>
<td>37.5</td>
<td>31.9</td>
<td>38.4</td>
<td>57.9</td>
<td>63.7</td>
<td>71.1</td>
<td>45.6</td>
<td>36%</td>
</tr>
<tr>
<td>"person" classification</td>
<td>SUN09</td>
<td></td>
<td>16.1</td>
<td>11.8</td>
<td>14.0</td>
<td>7.9</td>
<td>6.8</td>
<td>23.5</td>
<td>16.1</td>
<td>12.8</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>LabelMe</td>
<td></td>
<td>11.0</td>
<td>26.6</td>
<td>7.5</td>
<td>6.3</td>
<td>8.4</td>
<td>24.3</td>
<td>26.6</td>
<td>11.5</td>
<td>57%</td>
</tr>
<tr>
<td></td>
<td>PASCAL</td>
<td></td>
<td>11.9</td>
<td>11.1</td>
<td>20.7</td>
<td>13.6</td>
<td>48.3</td>
<td>50.5</td>
<td>20.7</td>
<td>27.1</td>
<td>-31%</td>
</tr>
<tr>
<td></td>
<td>ImageNet</td>
<td></td>
<td>8.9</td>
<td>11.1</td>
<td>11.8</td>
<td>20.7</td>
<td>76.7</td>
<td>61.0</td>
<td>20.7</td>
<td>33.9</td>
<td>-63%</td>
</tr>
<tr>
<td></td>
<td>Caltech101</td>
<td></td>
<td>7.6</td>
<td>11.8</td>
<td>17.3</td>
<td>22.5</td>
<td>99.6</td>
<td>65.8</td>
<td>99.6</td>
<td>25.0</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>MSRC</td>
<td></td>
<td>9.4</td>
<td>15.5</td>
<td>15.3</td>
<td>15.3</td>
<td>93.4</td>
<td>78.4</td>
<td>78.4</td>
<td>29.8</td>
<td>62%</td>
</tr>
<tr>
<td></td>
<td>Mean others</td>
<td></td>
<td>9.8</td>
<td>12.3</td>
<td>13.2</td>
<td>13.1</td>
<td>46.7</td>
<td>45.0</td>
<td>43.7</td>
<td>23.4</td>
<td>47%</td>
</tr>
</tbody>
</table>
Different kinds of bias

• *Selection bias*
 • Retrieve different kinds of images; keywords/search engines can bias.

• *Capture bias*
 • Objects photographed in similar ways that do not generalize, e.g., object always in center, race track car vs. street car, mugs.
Different kinds of bias

• *Selection bias*
 • Retrieve different kinds of images; keywords/search engines can bias.

• *Capture bias*
 • Objects photographed in similar ways that do not generalize, e.g., object always in center, race track car vs. street car, mugs.

• *Category/label bias*
 • Poorly-defined classes, e.g., painting vs. picture

• *Negative set bias*
 • In one vs. all classification, ‘all’ or “the rest of the world” is not well represented.
 • “Are features which helps classify ‘boat’ object really the boat, or are they the water it sits on?”
 • Low bias negative set would include many boat-free images of rivers and lakes.
Measuring Negative Set Bias

- Take negative examples from other datasets and add to superset; train against this.

<table>
<thead>
<tr>
<th>task</th>
<th>Positive Set:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUN09</td>
</tr>
<tr>
<td>"car" detection</td>
<td>self</td>
</tr>
<tr>
<td></td>
<td>all</td>
</tr>
<tr>
<td></td>
<td>percent drop</td>
</tr>
<tr>
<td>"person" detection</td>
<td>self</td>
</tr>
<tr>
<td></td>
<td>all</td>
</tr>
<tr>
<td></td>
<td>percent drop</td>
</tr>
</tbody>
</table>

- Drop in performance of ‘all’ suggests negative examples are being misclassified.
Overcoming bias at collection time

• *Selection bias*
 • Multiple keywords, search engines, countries.
 • Collect unknown images and label them by crowd-sourcing.

• *Capture bias*
 • Better sampling
 • Different transforms: noise, flips, rotations, affine, crops.
Overcoming bias at collection time

• **Category/label bias**
 • Clear instruction to turkers; unambiguous classes (possible?)
 • Pre-label clustering, or multiple acceptable answers.

• **Negative set bias**
 • Cross-dataset mining
 • Mine for hard negatives from unlabeled set using a reliable algorithm and high threshold.
While it remains in question whether creating an unbiased dataset is possible given limited resources, we propose a discriminative framework that directly exploits dataset bias during training.
More examples

Thank you Tiffany Chen
Viola-Jones with a bad training database
Google Photos, y'all fucked up. My friend's not a gorilla.
9:22 PM - 28 Jun 2015

3,199 Retweets 1,980 Likes
Google Photos (2015)

• What do you think the problem was?
• How could you fix it?

• Has it been fixed? Anyone use Google Photos?
Google Photos (2015)

@jackyalcine Quick update: we shouldn't be making piles with that label anymore, and searches are mostly fixed, but they can still turn up.. [in]

@jackyalcine ..photos where we failed to recognize that there was a face there at all. We're working on that issue now.
Not just a vision problem

Text embeddings also suffer:
https://gist.github.com/rspeer/ef750e7e407e04894cbb3b78a82d66aed

‘Sentiment analysis’ ->

```
In [12]: text_to_sentiment("this example is pretty cool")
Out[12]: 3.889968926086298

In [13]: text_to_sentiment("this example is okay")
Out[13]: 2.799773492425186

In [14]: text_to_sentiment("meh, this example sucks")
Out[14]: -1.1774475917460698
```
Not just a vision problem

Text embeddings also suffer:
https://gist.github.com/rspeer/ef750e7e407e04894c9b3b78a82d66aed

‘Sentiment analysis’ ->

```
In [15]: text_to_sentiment("Let's go get Italian food")
Out[15]: 2.0429166109408983

In [16]: text_to_sentiment("Let's go get Chinese food")
Out[16]: 1.4094033658140972

In [17]: text_to_sentiment("Let's go get Mexican food")
Out[17]: 0.38801985560121732
```
Word embedding trained on Google News – word2vec

In [20]: text_to_sentiment("My name is Yvette")
Out[20]: 0.9846380213298556

In [21]: text_to_sentiment("My name is Shaniqua")
Out[21]: -0.47048131775890656
AI ‘Safety’

Concrete Problems in AI Safety

In context of robots, but promising ideas

• Regularizer based on expert ‘risk’ of class confusion
Criminiality

(a) Three samples in criminal ID photo set S_c.

(b) Three samples in non-criminal ID photo set S_n.

Figure 1. Sample ID photos in our data set.

https://arxiv.org/abs/1611.04135
“Unlike a human examiner/judge, a computer vision algorithm or classifier has absolutely no subjective baggages, having no emotions, no biases whatsoever due to past experience, race, religion, political doctrine, gender, age, etc., no mental fatigue, no preconditioning of a bad sleep or meal. The automated inference on criminality eliminates the variable of meta-accuracy (the competence of the human judge/examiner) all together.”
Criminality

- 1100 non-criminal, 730 criminal Chinese face photos
- Tested various features + classifiers
Figure 13. (a), (b), (c) and (d) are the four subtypes of criminal faces corresponding to four cluster centroids on the manifold of S_c; (e), (f) and (g) are the three subtypes of non-criminal faces corresponding to three cluster centroids on the manifold of S_n. The number associated with each face is the average score of human judges (-1 for criminals; 1 for non-criminals).
What biases might exist? Discuss!

- Selection bias
- Capture bias
- Category/label bias
- Negative set bias
Is this real?

Whatever the case, it needs care! Significant ramifications.

Humans *might* be able to do this:

- *Small but statistically significant ability to tell criminal from non-criminal in photo.*

The accuracy of inferences about criminality based on facial appearance.
Journal of Social, Evolutionary, and Cultural Psychology, 5(1), 66-91.

MIT Technology Review has a good overview:
“Guns don't kill people, *people* kill people!”

“Machine learning doesn’t kill people, *training data* kills people!”

- *ML community, all the time.*
Dataset improvement: MS COCO

What is COCO?

COCO is a new image recognition, segmentation, and captioning dataset. COCO has several features:

- Object segmentation
- Recognition in Context
- Multiple objects per image
- More than 300,000 images
- More than 2 Million instances
- 80 object categories
- 5 captions per image
- Keypoints on 100,000 people

an elephant standing on top of a basket being held by a woman.
a woman standing holding a basket with an elephant in it.
a lady holding an elephant in a small basket.
a lady holds an elephant in a basket.
an elephant inside a basket lifted by a woman.
Decent Pew Overview on Big Picture

Rainie and Anderson

Code-Dependent: Pros and Cons of the Algorithm Age

Algorithms are aimed at optimizing everything. They can save lives, make things easier and conquer chaos. Still, experts worry they can also put too much control in the hands of corporations and governments, perpetuate bias, create filter bubbles, cut choices, creativity and serendipity, and could result in greater unemployment.

Help Do Something About It

Joy Buolamwini

Founded ‘Algorithmic Justice League’
https://www.ajlunited.org/
Predicting Financial Crime: Augmenting the Predictive Policing Arsenal

Brian Clifton¹, Sam Lavigne¹, and Francis Tseng¹

¹ The New Inquiry
https://thenewinquiry.com/

Abstract. Financial crime is a rampant but hidden threat. In spite of this, predictive policing systems disproportionately target “street crime” rather than white collar crime. This paper presents the White Collar Crime Early Warning System (WCCEWS), a white collar crime predictive model that uses random forest classifiers to identify high risk zones for incidents of financial crime.

Keywords: Criminal justice; crime models; capitalism, financial malfeasance; white collar crime; police patrol.
White Collar Crime Risk Zones uses machine learning to predict where financial crimes are most likely to occur across the US. To learn about our methodology, read our white paper.

By Brian Chilton, Sam Loughe and Francis Tietry for The New Inquiry Magazine, Vol. 59, 2018

[https://whitecollar.thenewinquiry.com/]
Recently researchers have demonstrated the effectiveness of applying machine learning techniques to facial features to quantify the “criminality” of an individual.\footnote{X. Wu and X. Zhang, “Automated inference on criminality using face images,” \textit{CoRR}, vol. abs/1611.04135, 2016.}

Figure 13. (a), (b), (c) and (d) are the four subtypes of criminal faces corresponding to four cluster centroids on the manifold of S_c; (e), (f) and (g) are the three subtypes of non-criminal faces corresponding to three cluster centroids on the manifold of S_n. The number associated with each face is the average score of human judges (-1 for criminals; 1 for non-criminals).
Recently researchers have demonstrated the effectiveness of applying machine learning techniques to facial features to quantify the “criminality” of an individual21.

We therefore plan to augment our model with facial analysis and psychometrics to identify potential financial crime at the individual level. As a proof of concept, we have downloaded the pictures of 7000 corporate executives whose LinkedIn profiles suggest they work for financial organizations, and then averaged their faces to produce generalized white collar criminal subjects unique to each high risk zone. Future efforts will allow us to predict white collar criminality through real-time facial analysis.
Face detection + facial landmark detection + image warping + averaging/PCA!

Fig. 7: Predicted White Collar Criminal for 40.7087811, -74.0064149