Category vs. instance recognition

Category:
- Find all the people
- Find all the buildings
- Often within a single image
- Often ‘sliding window’

Instance:
- Is this face James?
- Find this specific famous building
- Often within a database of images
Object detection vs. Scene Recognition

- Scenes can be defined by distribution of “stuff” – materials and surfaces with arbitrary shape.

- Objects are “things” that own their boundaries.

- Bag of words models are less popular for object detection because they throw away shape info.
Object Category Detection

• Focus on object search: “Where is it?”
• Build templates that quickly differentiate object patch from background patch
Challenges in modeling the object class

- Illumination
- Object pose
- ‘Clutter’
- Occlusions
- Intra-class appearance
- Viewpoint

Slide from K. Grauman, B. Leibe
Challenges in modeling the non-object class

True Detections

Bad Localization

Confused with Similar Object

Confused with Dissimilar Objects

Misc. Background
Object Detection Design challenges

• How to efficiently search for likely objects
 – Even simple models require searching hundreds of thousands of positions and scales.

• Feature design and scoring
 – How should appearance be modeled?
 What features correspond to the object?

• How to deal with different viewpoints?
 – Often train different models for a few different viewpoints
General Process of Object Recognition

1. Specify Object Model
2. Generate Hypotheses
3. Score Hypotheses
4. Resolve Detections

What are the object parameters?
Specifying an object model

1. Statistical Template in Bounding Box
 - Object is some \((x,y,w,h)\) in image
 - Features defined wrt bounding box coordinates

Images from Felzenszwalb
Specifying an object model

2. Articulated parts model
 - Object is configuration of parts
 - Each part is detectable
Specifying an object model

3. Hybrid template/parts model

Detections

Template Visualization

- root filters (coarse resolution)
- part filters (finer resolution)
- deformation models

Felzenszwalb et al. 2008
Specifying an object model

4. 3D-ish model

- Object is collection of 3D planar patches under affine transformation
Specifying an object model

5. Deformable 3D model

- Object is a parameterized space of shape/pose/deformation of class of 3D object

Learning a Model:

2) Shape Training
Why not just pick the most complex model?

• Inference is harder
 – More parameters
 – Harder to ‘fit’ (infer / optimize fit)
 – Longer computation
General Process of Object Recognition

1. Specify Object Model
2. Generate Hypotheses
3. Score Hypotheses
4. Resolve Detections

Propose an alignment of the model to the image
Generating hypotheses

1. Sliding window
 - Test patch at each location and scale
Generating hypotheses

1. Sliding window
 - Test patch at each location and scale

Note – Template did not change size
Each window is separately classified
Generating hypotheses

2. Voting from patches/keypoints

Interest Points → Matched Codebook Entries → Probabilistic Voting → 3D Voting Space (continuous)

Implicit Shape Model by Leibe et al.
Generating hypotheses

3. Region-based proposal
General Process of Object Recognition

Specify Object Model

Generate Hypotheses

Score Hypotheses

Resolve Detections

Mainly-gradient based features, usually based on summary representation, many classifiers
General Process of Object Recognition

1. Specify Object Model
2. Generate Hypotheses
3. Score Hypotheses
4. Resolve Detections

Rescore each proposed object based on whole set
Resolving detection scores

1. Non-max suppression

Score = 0.8

Score = 0.1

Score = 0.8

James Hays
Resolving detection scores

1. Non-max suppression

“Overlap” score is below some threshold
Resolving detection scores

2. Context/reasoning

(g) Car Detections: Local (h) Ped Detections: Local

Hoiem et al. 2006
Dalal Triggs: Person detection with HOG & linear SVM

- Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs, International Conference on Computer Vision & Pattern Recognition - June 2005
Statistical Template

Object model = sum of scores of features at fixed positions

+3 +2 -2 -1 -2.5 = -0.5 > 7.5

Non-object

+4 +1 +0.5 +3 +0.5 = 10.5 > 7.5

Object
1. Extract fixed-sized (64x128 pixel) window at each position and scale
2. Compute HOG (histogram of gradient) features within each window
3. Score the window with a linear SVM classifier
4. Perform non-maxima suppression to remove overlapping detections with lower scores

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05
• Tested with
 – RGB
 – LAB
 – Grayscale

• Gamma Normalization and Compression
 – Square root
 Slightly better performance vs. grayscale
 – Log
 Very slightly better performance vs. no adjustment
Outperforms

-1 0 1
centered

-1 1
uncentered

1 -8 0 8 -1

cubic-corrected

0 1
diagonal

0 1
-1 0

Sobel

-1 0 1
-2 0 2
-1 0 1
Histogram of Oriented Gradients

Orientation: 9 bins (for unsigned angles 0 - 180)

- Votes weighted by magnitude
- Bilinear interpolation between cells

Histograms in k x k pixel cells
Rectangular HOG (R-HOG)

How to normalize?

- Concatenate all cell responses from block into vector.
- Normalize vector.
- Extract responses from cell of interest.

\[f = \frac{v}{\sqrt{\|v\|^2_2 + e^2}} \]

\(e \) is a small constant (for empty bins).

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05
Normalize with respect to surrounding cells

Rectangular HOG (R-HOG)

Circular HOG also exist, but trickier implementation

\[f = \frac{v}{\sqrt{\|v\|_2^2 + e^2}} \]

\(e \) is a small constant (for empty bins)
Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05
Histograms of Oriented Gradients for Human Detection, CVPR05

0.16 = \mathbf{w}^T \mathbf{x} - b

\text{sign}(0.16) = 1

\Rightarrow \text{pedestrian}
Pedestrian detection with HOG

- Learn a pedestrian template using a support vector machine
- At test time, compare feature map with template over sliding windows.
- Find local maxima of response
- *Multi-scale*: repeat over multiple levels of a HOG pyramid

Figure 1. Details from the INRIA test set highlighting some limitations. (a–d) Unlabelled persons. (e–h) Ambiguous cases. (e) Reflections of persons on a shop window, not labelled. (f) Some persons drawn on a wall, only one of them is labelled. (g) Some mannequins, all labelled. (h) A poster depicting a man, not labelled.
How good is HOG at person detection?

Miss rate = 1 - recall
Something to think about...

- Sliding window detectors work
 - *very well* for faces
 - *fairly well* for cars and pedestrians
 - *badly* for cats and dogs

- Why are some classes easier than others?
Strengths/Weaknesses of Statistical Template Approach

Strengths
• Works very well for non-deformable objects with canonical orientations: faces, cars, pedestrians
• Fast detection

Weaknesses
• Not so well for highly deformable objects or “stuff”
• Not robust to occlusion
• Requires lots of training data
Tricks of the trade

• Details in feature computation really matter
 – E.g., normalization in Dalal-Triggs improves detection rate by 27% at fixed false positive rate

• Template size
 – Typical choice is size of smallest expected detectable object

• “Jittering” or “augmenting” to create synthetic positive examples
 – Create slightly rotated, translated, scaled, mirrored versions as extra positive examples.

• Bootstrapping to get hard negative examples
 1. Randomly sample negative examples
 2. Train detector
 3. Sample negative examples that score > -1
 4. Repeat until all high-scoring negative examples fit in memory