“Flashed Face Distortion”
2nd Place in the 8th Annual
Best Illusion of the Year Contest, VSS 2012
Keep your eyes on the cross.
Recognition so far

Category:
- Is this a bedroom?
- What class of scene is this?
- Holistic features/quantization

Instance:
- Find this specific famous building.
- Find this person.
- Local features/precise correspondence
- Often within a database of images
Recognition so far

Object (category) detection:
- Find all the people
- Find all the faces
- Often within a single image
- Often ‘sliding window’

Scenes have “stuff” – distribution of materials and surfaces with arbitrary shape.
- Bag of Words ok!

Objects are “things” with shape, boundaries.
- Bag of Words less ok as spatial layout is lost!
Object Category Detection

• Focus on object search: “Where is it?”
• Build templates that quickly differentiate object patch from background patch
Challenges in modeling the object class

Illumination
Object pose
‘Clutter’

Occlusions
Intra-class appearance
Viewpoint

[K. Grauman, B. Leibe]
Challenges in modeling the non-object class

- **True Detections**
- **Bad Localization**
- **Confused with Similar Object**
- **Confused with Dissimilar Objects**
- **Misc. Background**

[Hays]
Object Detection Design challenges

• How to efficiently search for likely objects
 – Even simple models require searching hundreds of thousands of positions and scales.

• Feature design and scoring
 – How should appearance be modeled?
 What features correspond to the object?

• How to deal with different viewpoints?
 – Often train different models for a few different viewpoints
General Process of Object Recognition

1. Specify Object Model
2. Generate Hypotheses
3. Score Hypotheses
4. Resolve Detections

What are the object parameters?
Specifying an object model

1. Statistical Template in Bounding Box
 - Object is some \((x, y, w, h)\) in image
 - Features defined wrt bounding box coordinates
Specifying an object model

2. Articulated parts model
 - Object is configuration of parts
 - Each part is detectable
Specifying an object model

3. Hybrid template/parts model

Detections

Template Visualization

root filters
coarse resolution

part filters
finer resolution

deformation models

Felzenszwalb et al. 2008
Specifying an object model

4. 3D-ish model

- Object is collection of 3D planar patches under affine transformation
Specifying an object model

5. Deformable 3D model

- Object is a parameterized space of shape/pose/deformation of class of 3D object

Learning a Model:

2) Shape Training
Specifying an object model

5. Deformable 3D model

• Object is a parameterized space of shape/pose/deformation of class of 3D object
Why not just pick the most complex model?

• Inference is harder
 – More parameters
 – Harder to ‘fit’ (infer / optimize fit)
 – Longer computation
General Process of Object Recognition

1. Specify Object Model
2. Generate Hypotheses
3. Score Hypotheses
4. Resolve Detections

Propose an alignment of the model to the image.
Generating hypotheses

1. 2D template model / sliding window
 – Test patch at each location and scale
Generating hypotheses

1. 2D template model / sliding window
 - Test patch at each location and scale

Note – Template did not change size
Each window is separately classified
Generating hypotheses

2. Voting from patches/keypoints

Interest Points → Matched Codebook Entries → Probabilistic Voting → 3D Voting Space (continuous)

Implicit Shape Model by Leibe et al.
Generating hypotheses

3. Region-based proposal

- Arbitrary bounding box + image ‘cut’ segmentation
General Process of Object Recognition

Specify Object Model
Generate Hypotheses
Score Hypotheses
Resolve Detections

Mainly gradient-based features, usually based on summary representation, many classifiers.
General Process of Object Recognition

1. Specify Object Model
2. Generate Hypotheses
3. Score Hypotheses
4. Resolve Detections

Rescore each proposed object based on whole set
Resolving detection scores

1. Non-max suppression

Score = 0.1

Score = 0.8

James Hays
Resolving detection scores

1. Non-max suppression

“Overlap” score is below some threshold

Where overlap = intersection over union (IoU) often called Jaccard index or similarity

IoU close to 1.0 is good
Resolving detection scores

2. Context/reasoning
 - Via geometry
 - Via known information or prior distributions

(g) Car Detections: Local (h) Ped Detections: Local

Hoiem et al. 2006
Dalal Triggs: Person detection with HOG & linear SVM

- Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs, International Conference on Computer Vision & Pattern Recognition - June 2005
Statistical Template

Object model =

sum of scores of features *at fixed positions!*

\[+3 +2 -2 -1 -2.5 = -0.5 > 7.5 \]

Non-object

\[+4 +1 +0.5 +3 +0.5 = 10.5 > 7.5 \]

Object
Example: Dalal-Triggs pedestrian detector

1. Extract fixed-sized (64x128 pixel) window at each position and scale
2. Compute HOG (histogram of gradient) features within each window
3. Score the window with a linear SVM classifier
4. Perform non-maxima suppression to remove overlapping detections with lower scores

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05
Input image → Normalize gamma & colour → Compute gradients → Weighted vote into spatial & orientation cells → Contrast normalize over overlapping spatial blocks → Collect HOG’s over detection window → Linear SVM → Person / non-person classification
• Tested with
 – RGB
 – LAB
 – Grayscale

• Gamma Normalization and Compression
 – Square root
 – Log

Slightly better performance vs. grayscale
Very slightly better performance vs. no adjustment
Histogram of Oriented Gradients

Orientation: 9 bins (for unsigned angles 0 - 180)

- Votes weighted by magnitude
- Bilinear interpolation between cells

Histograms over k x k pixel cells
Normalize with respect to surrounding cells

Rectangular HOG (R-HOG)

How to normalize?

- Concatenate all cell responses from block into vector.
- Normalize vector.
- Extract responses from cell of interest.
- Do this 4x for each overlapping block.

\[
f = \frac{v}{\sqrt{\|
v\|_2^2 + e^2}}
\]

e is a small constant (to remove div. by zero on empty bins)
Input image → Normalize gamma & colour → Compute gradients → Weighted vote into spatial & orientation cells → Contrast normalize over overlapping spatial blocks → Collect HOG’s over detection window → Linear SVM → Person / non-person classification

features = $15 \times 7 \times 9 \times 4 = 3780$

cells

normalizations by neighboring cells

orientations

$X =$
Slides by Pete Barnum

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05
Input image → Normalize gamma & colour → Compute gradients → Weighted vote into spatial & orientation cells → Contrast normalize over overlapping spatial blocks → Collect HOG’s over detection window → Linear SVM → Person / non-person classification

\[0.16 = w^T x - b \]

\[\text{sign}(0.16) = 1 \]

\[\Rightarrow \text{pedestrian} \]
Pedestrian detection with HOG

- Learn a pedestrian template using a support vector machine
- At test time, compare feature map with template over sliding windows.
- Find local maxima of response
- Multi-scale: repeat over multiple levels of a HOG pyramid

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005
INRIA pedestrian database
INRIA pedestrian database issues

Figure 1. Details from the INRIA test set highlighting some limitations. (a–d) Unlabelled persons. (e–h) Ambiguous cases. (e) Reflections of persons on a shop window, not labelled. (f) Some persons drawn on a wall, only one of them is labelled. (g) Some mannequins, all labelled. (h) A poster depicting a man, not labelled.
How good is HOG at person detection?

Miss rate = 1 - recall

DET – different descriptors on INRIA database
Something to think about…

• Sliding window detectors work
 – *very well* for faces
 – *fairly well* for cars and pedestrians
 – *badly* for cats and dogs

• Why are some classes easier than others?
Strengths/Weaknesses of Statistical Template Approach

Strengths

• Works very well for non-deformable objects with canonical orientations: faces, cars, pedestrians
• Fast detection

Weaknesses

• Not so well for highly deformable objects or “stuff”
• Not robust to occlusion
• Requires lots of training data
Tricks of the trade

• Details in feature computation really matter
 – E.g., normalization in Dalal-Triggs improves detection rate by 27% at fixed false positive rate

• Template size
 – Typical choice is size of smallest expected detectable object

• “Jittering” or “augmenting” to create synthetic positive examples
 – Create slightly rotated, translated, scaled, mirrored versions as extra positive examples.

• Bootstrapping to get hard negative examples
 1. Randomly sample negative examples
 2. Train detector
 3. Sample negative examples that score > -1
 4. Repeat until all high-scoring negative examples fit in memory
Live demo
Dalal-Triggs uses a template with a rigid form – humans are boxed shaped.

But...is there a way to learn the spatial layout more fluidly?
 – Might help us capture more appearance variation...

What about faster, too?
FACE DETECTION
Consumer application: Apple iPhoto

Things iPhoto thinks are faces
"The Nikon S60 detects up to 12 faces."
This person tried to unlock your Phone

2016/07/23 15:51
Face detection and recognition

Detection

Recognition

“Sally”
Challenges of face detection

Sliding window = tens of thousands of location/scale evaluations

- One megapixel image has $\sim 10^6$ pixels, and a comparable number of candidate face locations

Faces are rare: 0–10 per image

- For computational efficiency, spend as little time as possible on the non-face windows.

- For 1 Mpix, to avoid having a false positive in every image, our false positive rate has to be less than 10^{-6}
Sliding Window Face Detection with Viola-Jones

The Viola/Jones Face Detector

A seminal approach to real-time object detection. Training is slow, but detection is very fast.

Key ideas:

1. *Integral images* for fast feature evaluation
2. *Boosting* for feature selection
3. *Attentional cascade* for fast non-face window rejection
1. *Integral images* for fast feature evaluation

- The *integral image* computes a value at each pixel \((x,y)\) that is the sum of *all* pixel values above and to the left of \((x,y)\), inclusive.

- This can quickly be computed in one pass through the image.

- ‘Summed area table’

\[
I_{\Sigma}(x, y) = \sum_{x' \leq x} \sum_{y' \leq y} i(x', y')
\]
Computing the integral image

Region already computed

Current pixel
Computing the integral image

Cumulative row sum: $s(x, y) = s(x-1, y) + i(x, y)$

Integral image: $ii(x, y) = ii(x, y-1) + s(x, y)$

Python: $ii = \text{np.cumsum}(i)$
Computing sum within a rectangle

- Let A, B, C, D be the values of the integral image at the corners of a rectangle.

- The sum of original image values within the rectangle can be computed as:
 \[\text{sum} = A - B - C + D \]

Only 3 additions are required for any size of rectangle!
Integral Images

- $ii = \text{cumsum} (\text{cumsum} (\text{im}, 1), 2)$

$ii(x,y) = \text{Sum of the values in the grey region}$

$\text{SUM within Rectangle D is } ii(4) - ii(2) - ii(3) + ii(1)$
Features that are fast to compute

“Haar-like features”

– Differences of sums of intensity
– Computed at different positions and scales within sliding window

Two-rectangle features

Three-rectangle features

Etc.
“Rectangle filters”

\[
Value = \sum (\text{pixels in white area}) - \sum (\text{pixels in black area})
\]
Example

Source

Result
Computing a rectangle feature

Integral Image
But these features are rubbish…!

Yes, individually they are ‘weak classifiers’

Jargon: ‘feature’ and ‘classifier’ are used interchangeably here. Also with ‘learner’.

But, what if we combine *thousands* of them…

Two-rectangle features

Three-rectangle features

Etc.
How many features are there?

For a 24x24 detection region, the number of possible rectangle features is \(\sim 160,000 \)!
How many features are there?

• For a 24x24 detection region, the number of possible rectangle features is ~160,000!

• At test time, it is impractical to evaluate the entire feature set.

• Can we learn a ‘strong classifier’ using just a small subset of all possible features?
2. *Boosting* for feature selection

Initially, weight each training example equally.

Weight = size of point
In each boosting round:

Find the weak classifier that achieves the lowest \textit{weighted} training error.

Raise the weights of training examples misclassified by current weak classifier.
In each boosting round:

Find the weak classifier that achieves the lowest weighted training error.

Raise the weights of training examples misclassified by current weak classifier.

Weights Increased
In each boosting round:

Find the weak classifier that achieves the lowest *weighted* training error.

Raise the weights of training examples misclassified by current weak classifier.
In each boosting round:

Find the weak classifier that achieves the lowest *weighted* training error.

Raise the weights of training examples misclassified by current weak classifier.

Weights Increased
In each boosting round:

Find the weak classifier that achieves the lowest *weighted* training error.

Raise the weights of training examples misclassified by current weak classifier.
Compute final classifier as linear combination of all weak classifier.

Weight of each classifier is directly proportional to its accuracy.

Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost).

Boosting for face detection

- First two features selected by boosting:

This feature combination can yield 100% recall and 50% false positive rate
Feature selection with boosting

- Create a large pool of features (180K)
- Select discriminative features that work well together

\[h(x) = \text{sign} \left(\sum_{j=1}^{M} \alpha_j h_j(x) \right) \]

- “Weak learner” = feature + threshold + ‘polarity’

\[h_j(x) = \begin{cases} -s_j & \text{if } f_j < \theta_j \\ s_j & \text{otherwise} \end{cases} \]

‘polarity’ = black or white region flip

- Choose weak learner that minimizes error on the weighted training set, then reweight
Adaboost pseudocode

Szeliski p665

1. Input the positive and negative training examples along with their labels \(\{(x_i, y_i)\} \), where \(y_i = 1 \) for positive (face) examples and \(y_i = -1 \) for negative examples.

2. Initialize all the weights to \(w_{i,1} \leftarrow \frac{1}{N} \), where \(N \) is the number of training examples. (Viola and Jones (2004) use a separate \(N_1 \) and \(N_2 \) for positive and negative examples.)

3. For each training stage \(j = 1 \ldots M \):

 (a) Renormalize the weights so that they sum up to 1 (divide them by their sum).

 (b) Select the best classifier \(h_j(x; f_j, \theta_j, s_j) \) by finding the one that minimizes the weighted classification error

\[
e_j = \sum_{i=0}^{N-1} w_{i,j} e_{i,j},
\]

(14.3)

\[
e_{i,j} = 1 - \delta(y_i, h_j(x_i; f_j, \theta_j, s_j)).
\]

(14.4)

For any given \(f_j \) function, the optimal values of \((\theta_j, s_j)\) can be found in linear time using a variant of weighted median computation (Exercise 14.2).

(c) Compute the modified error rate \(\beta_j \) and classifier weight \(\alpha_j \),

\[
\beta_j = \frac{e_j}{1 - e_j} \quad \text{and} \quad \alpha_j = -\log \beta_j.
\]

(14.5)

(d) Update the weights according to the classification errors \(e_{i,j} \)

\[
w_{i,j+1} \leftarrow w_{i,j} \beta_j^{1-e_{i,j}},
\]

(14.6)

i.e., downweight the training samples that were correctly classified in proportion to the overall classification error.

4. Set the final classifier to

\[
h(x) = \text{sign} \left[\sum_{j=0}^{m-1} \alpha_j h_j(x) \right].
\]

(14.7)
Boosting vs. SVM

• Advantages of boosting
 • Integrates classifier training with feature selection
 • Complexity of training is linear instead of quadratic in the number of training examples
 • Flexibility in the choice of weak learners, boosting scheme
 • Testing is fast

• Disadvantages
 • Needs many training examples
 • Training is slow
 • Often doesn’t work as well as SVM (especially for many-class problems)
Fast classifiers early in cascade which reject many negative examples but detect almost all positive examples.

Slow classifiers later, but most examples don’t get there.
Attentional cascade

Chain classifiers that are progressively more complex and have lower false positive rates:

Receiver operating characteristic
Training the cascade

• Set target detection and false positive rates for each stage
• Keep adding features to the current stage until its target rates have been met
 • Need to lower boosting threshold to maximize detection (as opposed to minimizing total classification error)
 • Test on a validation set
• If the overall false positive rate is not low enough, then add another stage
• Use false positives from current stage as the negative training examples for the next stage
The implemented system

- **Training Data**
 - 5000 faces
 - All frontal, rescaled to 24x24 pixels
 - 300 million non-faces
 - 9500 non-face images
 - Faces are normalized
 - Scale, translation

- **Many variations**
 - Across individuals
 - Illumination
 - Pose
Viola-Jones details

• 38 stages with 1, 10, 25, 50 ... features
 – 6061 total used out of 180K candidates
 – 10 features evaluated on average

• Training Examples
 – 4916 positive examples
 – 10000 negative examples collected after each stage

• Scanning
 – Scale detector rather than image
 – Scale steps = 1.25 (factor between two consecutive scales)
 – Translation 1*scale (# pixels between two consecutive windows)

• Non-max suppression: average coordinates of overlapping boxes

• Train 3 classifiers and take vote
System performance

- Training time: “weeks” on 466 MHz Sun workstation
- 38 cascade layers, total of 6061 features
- Average of 10 features evaluated per window on test set
- “On a 700 Mhz Pentium III processor, the face detector can process a 384 by 288 pixel image in about .067 seconds”
 - 15 Hz
 - 15 times faster than previous detector of comparable accuracy (Rowley et al., 1998)
Viola Jones Results

Speed = 15 FPS (in 2001)

<table>
<thead>
<tr>
<th>Detector</th>
<th>10</th>
<th>31</th>
<th>50</th>
<th>65</th>
<th>78</th>
<th>95</th>
<th>167</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viola-Jones</td>
<td>76.1%</td>
<td>88.4%</td>
<td>91.4%</td>
<td>92.0%</td>
<td>92.1%</td>
<td>92.9%</td>
<td>93.9%</td>
</tr>
<tr>
<td>Viola-Jones (voting)</td>
<td>81.1%</td>
<td>89.7%</td>
<td>92.1%</td>
<td>93.1%</td>
<td>93.1%</td>
<td>93.2 %</td>
<td>93.7%</td>
</tr>
<tr>
<td>Rowley-Baluja-Kanade</td>
<td>83.2%</td>
<td>86.0%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>89.2%</td>
<td>90.1%</td>
</tr>
<tr>
<td>Schneiderman-Kanade</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>94.4%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roth-Yang-Ahuja</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(94.8%)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

MIT + CMU face dataset
Boosting for face detection

- A 200-feature classifier can yield 95% detection rate and a false positive rate of 1 in 14084

Receiver operating characteristic (ROC) curve

Not good enough!
Output of Face Detector on Test Images
Other detection tasks

Facial Feature Localization

Profile Detection

Male vs. female
Profile Detection
Profile Features
Live demo
Summary: Viola/Jones detector

- Rectangle features
- Integral images for fast computation
- Boosting for feature selection
- Attentional cascade for fast rejection of negative windows
Things to remember

- Sliding window for search

- Features based on differences of intensity (gradient, wavelet, etc.)
 - Excellent results = careful feature design

- Boosting for feature selection

- Integral images, cascade for speed

- Bootstrapping to deal with many, many negative examples