1950
Future Vision

13 February 2019
Computer Vision
Escher’s Circle Limit III
Machine Learning Problems

- **Supervised Learning**
 - Classification or categorization
 - Regression

- **Unsupervised Learning**
 - Clustering
 - Dimensionality reduction
ImageNet

- Images for each category of WordNet
- 1000 classes
- 1.2mil images
- 100k test
- Top 5 error
Dataset split

- Train classifier
- Measure error
- Tune model hyperparameters
- Secret labels
- Measure error

Random train/validate splits = cross validation
Training

Images

Image Features → Training → Trained classifier

Labels

Testing

Image *not in training set*

Image Features → Apply classifier → Prediction

Slide credit: D. Hoiem and L. Lazebnik
Features

- Raw pixels
- Histograms
- Templates
- SIFT descriptors
 - GIST
 - ORB
 - HOG...
Training

Images

Labels

Image Features

Training

Trained classifier

Testing

Image

not in training set

Image Features

Apply classifier

Prediction

Slide credit: D. Hoiem and L. Lazebnik
Recognition task and supervision

Think-Pair-Share

What are all the possible supervision (‘label’) types to consider?
Recognition task and supervision

- Images in the training set must be annotated with the "correct answer" that the model is expected to produce

Contains a motorbike
Spectrum of supervision

- Unsupervised
- “Weakly” supervised
- Fully supervised

E.G., ImageNet

E.G., MS Coco

‘Semi-supervised’: small partial labeling

Fuzzy; definition depends on task
Good training example?
Good labels?

an elephant standing on top of a basket being held by a woman.
a woman standing holding a basket with an elephant in it.
a lady holding an elephant in a small basket.
a lady holds an elephant in a basket.
an elephant inside a basket lifted by a woman.

http://mscoco.org/explore/?id=134918
Google guesses from the 1st caption
Training

Images

Labels

Image Features

Training

Trained classifier

Testing

Image not in training set

Image Features

Apply classifier

Prediction

Slide credit: D. Hoiem and L. Lazebnik
The machine learning framework

- Apply a prediction function to a feature representation of the image to get the desired output:

\[
f(\text{apple}) = \text{“apple”}
\]

\[
f(\text{tomato}) = \text{“tomato”}
\]

\[
f(\text{cow}) = \text{“cow”}
\]
The machine learning framework

\[f(\mathbf{x}) = y \]

<table>
<thead>
<tr>
<th>Prediction function or classifier</th>
<th>Image feature</th>
<th>Output (label)</th>
</tr>
</thead>
</table>

Training: Given a *training set* of labeled examples:

\[\{(x_1, y_1), \ldots, (x_N, y_N)\} \]

Estimate the prediction function \(f \) by minimizing the prediction error on the training set.

Testing: Apply \(f \) to a unseen *test example* \(\mathbf{x_u} \) and output the predicted value \(y_u = f(\mathbf{x_u}) \) to *classify* \(\mathbf{x_u} \).
Classification

Assign \mathbf{x} to one of two (or more) classes.

A decision rule divides input space into decision regions separated by decision boundaries – literally boundaries in the space of the features.
Classifiers: Nearest neighbor

\[f(x) = \text{label of the training example nearest to } x \]

- All we need is a distance function for our inputs
- No training required!

Quickie Think-Pair-Share: What does the decision boundary look like?
Classification

Assign x to one of two (or more) classes.

A decision rule divides input space into *decision regions* separated by *decision boundaries* – literally boundaries in the space of the features.

![Graphical representation of decision regions](image)
Decision boundary for Nearest Neighbor Classifier

Divides input space into *decision regions* separated by *decision boundaries* – Voronoi.

Voronoi partitioning of feature space for two-category 2D and 3D data

from Duda et al.

Source: D. Lowe
k-nearest neighbor

1-nearest

3-nearest

5-nearest
Classifiers: Linear

Find a *linear function* to separate the classes
Find a *linear function* to separate the classes:

\[f(x) = \text{sgn}(w \cdot x + b) \]
Classifiers: Linear SVM

Find a *linear function* to separate the classes:

\[f(x) = \text{sgn}(w \cdot x + b) \]

How?

\(X = \text{all data points} \)

Define *hyperplane* \(tX - b = 0 \), where \(t \) is tangent to hyperplane.

Minimize \(||t|| \) s.t. \(tX - b \) produces correct label for all \(X \)
Classifiers: Linear SVM

Find a linear function to separate the classes:
\[f(x) = \text{sgn}(w \cdot x + b) \]

What if my data are not linearly separable?

Introduce flexible ‘hinge’ loss (or ‘soft-margin’).
Datasets that are linearly separable work out great:

But what if the dataset is just too hard?

We can map it to a higher-dimensional space:
Nonlinear SVMs

Map the original input space to some higher-dimensional feature space where the training set is separable:

\[\Phi: \mathbf{x} \rightarrow \varphi(\mathbf{x}) \]
Nonlinear SVMs

The kernel trick: instead of explicitly computing the lifting transformation $\phi(x)$, define a kernel function K such that:

$$K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$$

This gives a *non-linear* decision boundary in the original feature space:

$$\sum_i \alpha_i y_i \phi(x_i) \cdot \phi(x) + b = \sum_i \alpha_i y_i K(x_i, x) + b$$

But...we only transformed the distance function K!

Common kernel function: Radial basis function kernel

Consider the mapping \(\varphi(x) = (x, x^2) \)

\[
\varphi(x) \cdot \varphi(y) = (x, x^2) \cdot (y, y^2) = xy + x^2 y^2
\]

\[
K(x, y) = xy + x^2 y^2
\]
Kernels for bags of features

• Histogram intersection kernel:

\[I(h_1, h_2) = \sum_{i=1}^{N} \min(h_1(i), h_2(i)) \]

• Generalized Gaussian kernel:

\[K(h_1, h_2) = \exp\left(-\frac{1}{A} D(h_1, h_2)^2\right) \]

\(D \) can be (inverse) L1 distance, Euclidean distance, \(\chi^2 \) distance, etc.

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, IJCV 2007
Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study
What about multi-class SVMs?

Unfortunately, there is no “definitive” multi-class SVM.

In practice, we combine multiple two-class SVMs

One vs. others
- Training: learn an SVM for each class vs. the others
- Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

One vs. one
- Training: learn an SVM for each pair of classes
- Testing: each learned SVM “votes” for a class to assign to the test example
SVMs: Pros and cons

• Pros
 – Many publicly available SVM packages: http://www.kernel-machines.org/software
 – Kernel-based framework is very powerful, flexible
 – SVMs work very well in practice, even with very small training sample sizes

• Cons
 – No “direct” multi-class SVM, must combine two-class SVMs
 – Computation, memory
 • During training time, must compute matrix of kernel values for every pair of examples
 • Learning can take a very long time for large-scale problems
Training

- Training Images
- Image Features
- Training
- Learned classifier

Testing

- Test Image
- Image Features
- Apply classifier
- Prediction

Slide credit: D. Hoiem and L. Lazebnik
Features and distance measures define visual similarity.

Training labels dictate that examples are the same or different.

Classifiers learn weights (or parameters) of features and distance measures... so that visual similarity predicts label similarity.
Generalization

How well does a learned model generalize from the data it was trained on to a new test set?

Training set (labels known) Test set (labels unknown)

Slide credit: L. Lazebnik
Generalization Error

Bias:
- Difference between the expected (or average) prediction of our model and the correct value.
- Error due to inaccurate assumptions/simplifications.

Variance:
- Amount that the estimate of the target function will change if different training data was used.
Bias = accuracy
Variance = precision
Generalization Error Effects

Underfitting: model is too “simple” to represent all the relevant class characteristics

- High bias (few degrees of freedom) and low variance
- High training error and high test error

Green line = true data-generating function without noise
Blue line = data model which underfits

Slide credit: L. Lazebnik
Generalization Error Effects

Overfitting: model is too “complex” and fits irrelevant characteristics (noise) in the data

- Low bias (many degrees of freedom) and high variance
- Low training error and high test error

Green line = true data-generating function without noise
Blue line = data model which overfits

Slide credit: L. Lazebnik
Bias-Variance Trade-off

Models with too few parameters are inaccurate because of a large bias.
 • Not enough flexibility!
 • Too many assumptions

Models with too many parameters are inaccurate because of a large variance.
 • Too much sensitivity to the sample.
 • Slightly different data -> very different function.
Bias-variance tradeoff

Fixed number of training examples

Underfitting

Overfitting

Generalization Error

Model complexity

Error

High Bias
Low Variance

Low Bias
High Variance

Slide credit: D. Hoiem
Bias-variance tradeoff

![Graph showing the bias-variance tradeoff. The x-axis represents model complexity, ranging from high bias and low variance to low bias and high variance. The y-axis represents test error, ranging from low to high. The diagram illustrates the overfitting and underfitting regions.](Slide credit: D. Hoiem)
Effect of Training Size

Fixed complexity prediction model

Error

Number of Training Examples
“Learn the data boundary”

Given:
Observations X
Targets Y

Learn conditional distribution:
$P(Y|X = x)$

“Represent the data and then define boundary”

Given:
Observations X
Targets Y

Learn joint distribution:
$P(X, Y)$
Many classifiers to choose from...

- K-nearest neighbor
- SVM
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- Boosted Decision Trees
- Restricted Boltzmann Machines
- Neural networks
- Deep Convolutional Network
- ...

Which is the best?
Claim:

The decision to use machine learning is more important than the choice of a particular learning method.

Deep learning seems to be an exception to this, currently, because it learns the feature representation.
Claim:

It is more important to have more or better labeled data than to use a different supervised learning technique.

*Again, deep learning may be an exception here for the same reason, but deep learning _needs_ a lot of labeled data in the first place.

“The Unreasonable Effectiveness of Data” - Norvig
What to remember about classifiers

- No free lunch: machine learning algorithms are tools, not dogmas
- Try simple classifiers first
- Better to have smart features and simple classifiers than simple features and smart classifiers
- Use increasingly powerful classifiers with more training data (bias-variance tradeoff)