

Future Vision

COMPUTER VISION

Cats + mirrors + face filters

[reddit - juicysox]

[Isa Milefchik (1430 HTA Spring 2020)]

[Madelyn Adams (student Spring 2019)]

Zoom protocol

Please:

- Cameras on (it really helps me to see you)
- Real names
- Mics muted
- Raise hands in Zoom for questions, unmute when I call
- I will ask more often for questions

Project 4 - due Friday

- Both parts
- Written
- Code

Project 5

- Questions and code due Friday April $10^{\text {th }}$

Final group project

- Groups of four
- Groups of one are discouraged - you need a good reason.
- Group by timezone where possible; use Piazza
- We'll go over possible projects at a later date

Questions

- What else did I miss?

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

What is a camera?

Google

Translate

French English	Italian	Detect language	\checkmark	$\stackrel{ }{4}$
camera				\times
4) ${ }^{-1}$				6/5000

Synonyms of camera

noun
vano, camera da letto
$\checkmark 4$ more synonyms

See also

camera da letto, camera doppia, camera singola, servizio in camera, camera d'aria, camera oscura, camera libera, camera mortuaria, camera dei bambini, camera con colazione

Translate

room

```
&)
```

Translations of camera
noun
room camera, stanza, sala, ambiente, spazio, locale

- chamber camera, cavità, aula
- house casa, abitazione, edificio, dimora, camera, albergo
- apartment appartamento, alloggio, camera, stanza
- lodging alloggio, alloggiamento, appartamento, camera

Camera obscura: dark room

Known during classical period in China and Greece (e.g., Mo-Ti, China, 470BC to 390BC)

Freestanding camera obscura at UNC Chapel Hill
Photo by Seth llys

Camera obscura / lucida used for tracing

Lens Based Camera Obscura, 1568
Camera lucida

Tim's Vermeer

Vermeer, The Music Lesson, 1665

Tim Jenison (Lightwave 3D, Video Toaster)

Tim's Vermeer - video still

First Photograph

Oldest surviving photograph

- Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Dimensionality Reduction Machine (3D to 2D)

3D world

2D image

Point of observation

Holbein's The Ambassadors - 1533

Holbein's The Ambassadors - Memento Mori

2D IMAGE TRANSFORMS

Parametric (global) transformations

$\mathbf{p}=(x, y)$

$$
\mathbf{p}^{\prime}=\left(x^{\prime}, y^{\prime}\right)
$$

Transformation T is a coordinate-changing machine:

$$
\mathrm{p}^{\prime}=T(\mathrm{p})
$$

What does it mean that T is global?

- T is the same for any point p
T can be described by just a few numbers (parameters)
For linear transformations, we can represent T as a matrix

$$
\begin{gathered}
\mathrm{p}^{\prime}=\mathbf{T p} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{gathered}
$$

Common transformations

Original

Transformed

Translation

Rotation

Scaling

Affine

Perspective

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:

Scaling

- Non-uniform scaling: different scalars per component:

Scaling

- Scaling operation: $x^{\prime}=a x$

$$
y^{\prime}=b y
$$

- Or, in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}_{\text {scaling matrix } S}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2-D Rotation

2-D Rotation

This is easy to capture in matrix form:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]}_{\mathbf{R}}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Even though $\sin (\theta)$ and $\cos (\theta)$ are nonlinear functions of θ,
$-x^{\prime}$ is a linear combination of x and y
$-y^{\prime}$ is a linear combination of x and y

What is the inverse transformation?

- Rotation by $-\theta$
- For rotation matrices $\quad \mathbf{R}^{-1}=\mathbf{R}^{T}$

Basic 2D transformations

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=} \\
\text { Scale } \\
{\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=} \\
\underset{\text { Rotate }}{\left[\begin{array}{cc}
\cos \Theta & -\sin \Theta \\
\sin \Theta & \cos \Theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=} {\left[\begin{array}{cc}
1 & \alpha_{x} \\
\alpha_{y} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] } \\
& \text { Shear } \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underset{ }{\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} }
\end{aligned}
$$

Affine is any combination of translation, scale, rotation, and shear

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

or
Properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

2D image transformations (reference table)

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

'Homography'

Projective Transformations

Projective transformations are combos of

- Affine transformations, and
- Projective warps

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]
$$

Properties of projective transformations:

- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis
- Projective matrix is defined up to a scale (8 degrees of freedom)

Cameras and World Geometry

Photo Tourism
 Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski University of Washington

Let's design a camera

Idea 1: Put a sensor in front of an object Do we get a reasonable image?

Let's design a camera

Idea 2: Add a barrier to block most rays

- Pinhole in barrier
- Only sense light from one direction.
- Reduces blurring.
- In most cameras, this aperture can vary in size.

Pinhole camera model

$\mathrm{f}=$ Focal length
c = Optical center of the camera

Projection: world coordinates \rightarrow image coordinates

$$
U=-X * \frac{f}{Z} \quad V=-Y * \frac{f}{Z}
$$

p = distance from image center

What is the effect if f and Z are equal?

Projective Geometry

Length (and so area) is lost.

Length and area are not preserved

Figure by David Forsyth

Projective Geometry

Angles are lost.

Projective Geometry

What is preserved?

- Straight lines are still straight.

Vanishing points and lines

Parallel lines in the world intersect in the projected image at a "vanishing point".

Parallel lines on the same plane in the world converge to vanishing points on a "vanishing line".
E.G., the horizon.

Vanishing points and lines

Pinhole camera model

$\mathrm{f}=$ Focal length
c = Optical center of the camera

Projection: world coordinates \rightarrow image coordinates

$$
U=-X * \frac{f}{Z} \quad V=-Y * \frac{f}{Z}
$$

p = distance from image center

What is the effect if f and Z are equal?

Projective geometry

- 2 D point in cartesian $=(\mathrm{x}, \mathrm{y})$ coordinates
- 2D point in projective $=(x, y, w)$ coordinates

Projective geometry

- 2 D point in cartesian $=(\mathrm{x}, \mathrm{y})$ coordinates
- 2D point in projective $=(x, y, w)$ coordinates

Varying w

W_{1}

$$
\mathrm{W}_{2}<\mathrm{W}_{1}
$$

Projected image becomes smaller.

Projective geometry

- 2 D point in projective $=(\mathrm{x}, \mathrm{y}, \mathrm{w})$ coordinates
$-w$ defines the scale of the projected image.
- Each x,y point becomes a ray!

Projective geometry

- In 3D, point (x, y, z) becomes (x, y, z, w)
- Perspective is w varying with z :
- Objects far away are appear smaller

Homogeneous coordinates

Converting to homogeneous coordinates

$$
(x, y) \Rightarrow\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \quad(x, y, z) \Rightarrow\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

2 D (image) coordinates
3D (scene) coordinates

Converting from homogeneous coordinates

$$
\begin{array}{ll}
{\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)} & {\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]} \\
\text { 2D (image) coordinates } & \text { 3D (scene) coordinates }
\end{array}
$$

Homogeneous coordinates

Scale invariance in projection space

$$
\begin{aligned}
& k\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{c}
k x \\
k y \\
k w
\end{array}\right]
\end{aligned} \underset{\text { Comogeneous }}{\text { Coordinates }} \underset{\text { Cortesian }}{\left[\begin{array}{c}
\frac{k x}{k w} \\
\frac{k y}{k w}
\end{array}\right]=\left[\begin{array}{c}
\frac{x}{w} \\
\frac{y}{w}
\end{array}\right]}
$$

E.G., we can uniformly scale the projective space, and it will still produce the same image $->$ scale ambiguity

Homogeneous coordinates

- Projective
- Point becomes a line

To homogeneous

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

From homogeneous

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

Lenses

Real cameras aren't pinhole cameras.

Home-made pinhole camera

Shrinking the aperture

2 mm

Less light gets through

Integrate over fewer angles

Shrinking the aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects...

Shrinking the aperture - diffraction

Light diffracts as wavelength of aperture equals wavelength of light

The reason for lenses

Slide by Steve Seitz

Let's design a camera

Idea 2: Add a barrier to block most rays

- Pinhole in barrier
- Only sense light from one direction.
- Reduces blurring.
- In most cameras, this aperture can vary in size.

Focus and Defocus

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

Thin lenses

Thin lens equation:

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f} \quad \frac{1}{f}-\frac{1}{d_{o}}=\frac{1}{d_{i}}
$$

Any object point satisfying this equation is in focus
What is the shape of the focus region?
How can we change the focus region?
Thin lens applet: https://sites.google.com/site/marclevoylectures/applets/operation-of-a-thin-lens
(by Andrew Adams, Nora Willett, Marc Levoy)

Beyond Pinholes: Real apertures

Bokeh:

[Rushif - Wikipedia]

Depth Of Field

Depth of Field

Depth of Field

Changing the aperture size affects depth of field

Wide aperture

A narrower aperture increases the range in which the object is approximately in focus.

Narrower aperture reduces amount of light need to increase exposure.

Varying the aperture

Large aperture = small DOF

Small aperture = large DOF

Accidental Cameras

Accidental Pinhole and Pinspeck Cameras
Revealing the scene outside the picture. Antonio Torralba, William T. Freeman

Accidental Cameras

DSLR - Digital Single Lens Reflex Camera

DSLR - Digital Single Lens Reflex Camera

"See what the main lens sees"

1. Objective (main) lens
2. Mirror
3. Shutter
4. Sensor
5. Mirror in raised position
6. Viewfinder focusing lens
7. Prism
8. Eye prescription lens

Shutters

Shutters

Shutters

[The Slo-Mo Guys]

Sensors: Rolling shutter vs. global shutter

Many modern cameras have purely digital shutters.

Sensor ISO

ISO = old film terminology
= sensitivity to light

ISO 200 is twice as sensitive as ISO 100.

Digital Photography:
ISO = 'gain' or amplification of sensor signal

Field of View (Zoom)

Field of View (Zoom)

Field of View (Zoom) = Cropping

FOV depends of Focal Length

Size of field of view governed by size of the camera retina:

$$
\varphi=\tan ^{-1}\left(\frac{d}{2 f}\right)
$$

Smaller FOV = larger Focal Length

Field of View / Focal Length

Large FOV, small f Camera close to car

Small FOV, large f
Camera far from the car

Lens Flaws

Lens Flaws: Chromatic Aberration

- Dispersion: wavelength-dependent refractive index
- (enables prism to spread white light beam into rainbow)
- Modifies ray-bending and lens focal length: $f(\lambda)$

Color fringes near edges of image
Corrections: add 'doublet' lens of flint glass, etc.

Chromatic Aberration

Near Lens Center

Near Lens Outer Edge

Radial Distortion (e.g. 'barrel' and 'pin-cushion')

Straight lines curve around the image center

Radial Distortion

- Radial distortion of the image
- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Corrected Barrel Distortion

Vignetting

Optical system occludes rays entering at obtuse angles.

Causes darkening at edges.
'Old mode' - but WHY?

Computer-aided lens design (optimization) and manufacturing made removing (all) these flaws
 _much_easier.

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

Camera (projection) matrix

$$
\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \mathbf{X}
$$

Extrinsic Matrix
\mathbf{x} : Image Coordinates: ($u, v, 1$)
K: Intrinsic Matrix (3×3)
R: Rotation (3x3)
t: Translation (3x1)
X: World Coordinates: (X,Y,Z,1)

Projection matrix

Intrinsic Assumptions Extrinsic Assumptions

- Unit aspect ratio
- Optical center at $(0,0)$
- No skew
$\mathbf{X}=\mathbf{K}\left[\begin{array}{ll}\mathbf{I} & \mathbf{0}\end{array}\right] \mathbf{X} \Rightarrow w\left[\begin{array}{c}u \\ v \\ 1\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]$

Projection: world coordinates \rightarrow image coordinates

Remove assumption: known optical center

Intrinsic Assumptions Extrinsic Assumptions

- Unit aspect ratio
- No skew
- No rotation
- Camera at ($0,0,0$)

Remove assumption: equal aspect ratio

$$
\begin{aligned}
& \text { Intrinsic Assumptions Extrinsic Assumptions } \\
& \text { - No skew } \\
& \text { - No rotation } \\
& \text { - Camera at (0,0,0) } \\
& \mathbf{X}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \mathbf{X} \Rightarrow w\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{cccc|c}
1 f_{x}-\cdots & u_{0} & 0 \\
i_{x} & f_{y} & v_{0} & 0 \\
10 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
10 \\
z \\
1
\end{array}\right]
\end{aligned}
$$

Remove assumption: non-skewed pixels

$$
\left.\begin{array}{rl}
\text { Intrinsic Assumptions } & \text { Extrinsic Assumptions } \\
& \bullet \text { •No rotation } \\
& \bullet \text { Camera at }(0,0,0)
\end{array}\right\} \begin{array}{ll}
\mathbf{X}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \mathbf{X} \Rightarrow w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 f_{x} & s & u_{0}^{\prime} & 0 \\
10 & f_{y} & v_{0}^{1} & 0 \\
10 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
\end{array}
$$

Oriented and Translated Camera

Allow camera translation

Intrinsic Assumptions
Extrinsic Assumptions

- No rotation

$$
\mathbf{X}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{t}
\end{array}\right] \mathbf{X} \Rightarrow w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
f_{x} & s & u_{0} \\
0 & f_{y} & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

Allow camera rotation

$$
\left.\begin{array}{c}
\mathbf{x}=\mathbf{K}[\mathbf{R} \\
\mathbf{t}
\end{array}\right] \mathbf{X} .
$$

Camera (projection) matrix

$$
w\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
f_{x} & s & u_{0} \\
0 & f_{y} & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & t_{y} \\
r_{31} & r_{32} & r_{33} & t_{z}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Demo - Kyle Simek

"Dissecting the Camera Matrix"
Three-part blog series

- http://ksimek.github.io/2012/08/14/decompose/
- http://ksimek.github.io/2012/08/22/extrinsic/
- http://ksimek.github.io/2013/08/13/intrinsic/
"Perspective toy"
- http://ksimek.github.io/perspective camera toy.html

Orthographic Projection

- Special case of perspective projection
- Distance from the COP to the image plane is infinite

Things to remember

Projection loses length, area, angle, but straight lines remain straight.

Pinhole camera model and camera projection matrix.

$$
X=T\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{~B}
\end{array} \mathrm{4}\right]
$$

Homogeneous coordinates.

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

Heterochromia iridum

From Wikipedia, the free encyclopedia

Not to be confused with Heterochromatin or Dichromatic (disambiguation). In anatomy, heterochromia (ancient Greek: ह̌тع different + $\chi \rho \omega ́ \mu \alpha$, chróma, color ${ }^{[1]}$) is a difference in coloration, usually of the iris but also of hair or skin. Heterochromia is a result of the relative excess or lack of melanin (a pigment). It may be inherited, or caused by genetic mosaicism, chimerism, disease, or injury. [2]

Heterochromia of the eye (heterochromia iridis or heterochromia iridum) is of three kinds. In complete heterochromia, one iris is a different color from the other. In sectoral heterochromia, part of one iris is a different color from its remainder and finally in "central heterochromia" there are spikes of different colours radiating from the pupil.

How to calibrate the camera?
(also called "camera resectioning")

$$
\begin{gathered}
\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \mathbf{X} \\
\mathbf{X}=\mathbf{M X} \mathbf{X}
\end{gathered}
$$

$$
\left[\begin{array}{c}
w u \\
w v \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Linear least-squares regression!

Simple example: Fitting a line

Least squares fitting - line model

-Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
-Line equation: $y_{i}=m x_{i}+b$
-Find (m, b) to minimize

$$
E=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}
$$

$$
\begin{aligned}
& E=\sum_{i=1}^{n}\left(\left[\begin{array}{ll}
x_{i} & 1
\end{array}\right]\left[\begin{array}{l}
m \\
b
\end{array}\right]-y_{i}\right)^{2}=\left\|\left[\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]-\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]\right\|^{2}=\|\mathbf{A p}-\mathbf{y}\|^{2} \\
&\left.=\mathbf{y}^{T} \mathbf{y}-2(\mathbf{A p})^{T} \mathbf{y}+(\mathbf{A p})^{T} \mathbf{A} \mathbf{A}\right) \\
& \frac{d E}{d p}=2 \mathbf{A}^{T} \mathbf{A p}-2 \mathbf{A}^{T} \mathbf{y}=0 \quad \begin{array}{l}
\text { Matlab: p = A } \backslash \mathbf{y} ; \\
\text { Python: } \\
\mathbf{p}=\mathrm{np} . l i n a l g . l \operatorname{stsq}(\mathrm{~A}, \mathrm{y})[0]
\end{array}
\end{aligned}
$$

$\mathbf{A}^{T} \mathbf{A p}=\mathbf{A}^{T} \mathbf{y} \Rightarrow \mathbf{p}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{y} \quad$ (Closed form solution)

Example: solving for translation

Given matched points in $\{A\}$ and $\{B\}$, estimate the translation of the object

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\left[\begin{array}{c}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right]
$$

Example: solving for translation

Least squares setup

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{B}-x_{1}^{A} \\
y_{1}^{B}-y_{1}^{A} \\
\vdots \\
x_{n}^{B}-x_{n}^{A} \\
y_{n}^{B}-y_{n}^{A}
\end{array}\right]
$$

Example: discovering rot/trans/scale

Given matched points in $\{A\}$ and $\{B\}$, estimate the transformation matrix

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\mathrm{T}\left[\begin{array}{c}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right] \quad \mathrm{T}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Are these transformations enough?

World vs Camera coordinates

Calibrating the Camera

Use an scene with known geometry

- Correspond image points to 3d points
- Get least squares solution (or non-linear solution)

Known 3d world locations

Unknown Camera Parameters

How do we calibrate a camera?

Known 2d

image coords

Known 3d world locations

What is least squares doing?

- Given 3D point evidence, find best \mathbf{M} which minimizes error between estimate (\mathbf{p}^{\prime}) and known corresponding 2D points (p).

What is least squares doing?

- Best \mathbf{M} occurs when $\mathbf{p}^{\prime}=\mathbf{p}$, or when $\mathbf{p}^{\prime}-\mathbf{p}=0$
- Form these equations from all point evidence
- Solve for model via closed-form regression

Unknown Camera Parameters

First, work out where $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
projects to under candidate M.

$$
s u=m_{11} X+m_{12} Y+m_{13} Z+m_{14}
$$

$$
s v=m_{21} X+m_{22} Y+m_{23} Z+m_{24}
$$

$$
s=m_{31} X+m_{32} Y+m_{33} Z+m_{34}
$$

Two equations per 3D point

$$
\begin{aligned}
& u=\frac{m_{11} X+m_{12} Y+m_{13} Z+m_{14}}{m_{31} X+m_{32} Y+m_{33} Z+m_{34}} \\
& v=\frac{m_{21} X+m_{22} Y+m_{23} Z+m_{24}}{m_{31} X+m_{32} Y+m_{33} Z+m_{34}}
\end{aligned}
$$

Unknown Camera Parameters

Next, rearrange into form where all M coefficients are individually stated in terms of X, Y, Z, u, v.
-> Allows us to form Isq matrix.

$$
\begin{aligned}
u & =\frac{m_{11} X+m_{12} Y+m_{13} Z+m_{14}}{m_{31} X+m_{32} Y+m_{33} Z+m_{34}} \\
v & =\frac{m_{21} X+m_{22} Y+m_{23} Z+m_{24}}{m_{31} X+m_{32} Y+m_{33} Z+m_{34}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(m_{31} X+m_{32} Y+m_{33} Z+m_{34}\right) u=m_{11} X+m_{12} Y+m_{13} Z+m_{14} \\
& \left(m_{31} X+m_{32} Y+m_{33} Z+m_{34}\right) v=m_{21} X+m_{22} Y+m_{23} Z+m_{24} \\
& m_{31} u X+m_{32} u Y+m_{33} u Z+m_{34} u=m_{11} X+m_{12} Y+m_{13} Z+m_{14} \\
& m_{31} v X+m_{32} v Y+m_{33} v Z+m_{34} v=m_{21} X+m_{22} Y+m_{23} Z+m_{24}
\end{aligned}
$$

Unknown Camera Parameters

Next, rearrange into form where all M coefficients are individually stated in terms of X, Y, Z, u, v.
-> Allows us to form Isq matrix.

$$
\begin{aligned}
& m_{31} u X+m_{32} u Y+m_{33} u Z+m_{34} u=m_{11} X+m_{12} Y+m_{13} Z+m_{14} \\
& m_{31} v X+m_{32} v Y+m_{33} v Z+m_{34} v=m_{21} X+m_{22} Y+m_{23} Z+m_{24} \\
0= & m_{11} X+m_{12} Y+m_{13} Z+m_{14}-m_{31} u X-m_{32} u Y-m_{33} u Z-m_{34} u \\
0= & m_{21} X+m_{22} Y+m_{23} Z+m_{24}-m_{31} v X-m_{32} v Y-m_{33} v Z-m_{34} v
\end{aligned}
$$

Unknown Camera Parameters

- Finally, solve for m's entries using linear least squares
- Method 1 - $\mathbf{A x}=\mathbf{b}$ form

MATLAB:
M = A\b;
$M=[M ; 1]$;
$M=\operatorname{reshape}(M,[], 3)$ ';

Python Numpy:
M = np.linalg.lstsq(A,b)[0];
M = np.append(M,1)
$M=n p . \operatorname{reshape}(M,(3,4))$

Unknown Camera Parameters

- Or, solve for m's entries using total linear least-squares
- Method 2 - $\mathbf{A x}=\mathbf{0}$ form

$$
\begin{aligned}
& \text { - Find non-trivial solution (not } A=0 \text {) } \\
& \text { X } \\
& \text { MATLAB: } \\
& {[\mathrm{U}, \mathrm{~S}, \mathrm{~V}]=\operatorname{svd}(\mathrm{A}) \text {; }} \\
& M=V(:, e n d) ; \\
& M=\operatorname{reshape}(M,[], 3)^{\prime} \text {; } \\
& \text { Python Numpy: } \\
& \mathrm{U}, \mathrm{~S}, \mathrm{Vh}=\mathrm{np} . \operatorname{linalg} . \operatorname{svd}(a) \\
& \text { \# V = Vh.T } \\
& M=\operatorname{Vh}[-1,:] \\
& \text { James Hays }
\end{aligned}
$$

How do we calibrate a camera?

Known 2d image coords

Known 3d world locations

Known 2d image coords

Known 3d world locations

Known 2d image coords

Known 3d world locations

Projection error defined by two equations - one for u and one for v

How many points do I need to fit the model?

$\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right] \mathbf{X}$

Degrees of freedom?

$$
\left.\begin{array}{l}
\text { edom? } \\
w\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]
\end{array}\right]=\left[\begin{array}{ccc}
\alpha & s & u_{0} \\
0 & \beta & v_{0} \\
0 & 0 & 1
\end{array}\right] \underbrace{\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]} \begin{array}{l}
t_{x} \\
t_{y} \\
t_{z}
\end{array}]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Think 3:

- Rotation around x
- Rotation around y
- Rotation around z

How many points do I need to fit the model?

$\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right] \mathbf{X}$

Degrees of freedom?

$$
\begin{aligned}
& \text { edom? } \\
& w\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
\alpha & s & u_{0} \\
0 & \beta & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & t_{y} \\
r_{31} & r_{32} & r_{33} & t_{z}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
\end{aligned}
$$

\mathbf{M} is 3×4, so 12 unknowns, but projective scale ambiguity -11 deg. freedom. One equation per unknown -> $51 / 2$ point correspondences determines a solution (e.g., either u or v).

More than $51 / 2$ point correspondences -> overdetermined, many solutions to \mathbf{M}. Least squares is finding the solution that best satisfies the overdetermined system.

Why use more than 6 ? Robustness to error in feature points.

Calibration with linear method

- Advantages
- Easy to formulate and solve
- Provides initialization for non-linear methods
- Disadvantages
- Doesn't directly give you camera parameters
- Doesn't model radial distortion
- Can't impose constraints, such as known focal length
- Non-linear methods are preferred
- Define error as difference between projected points and measured points
- Minimize error using Newton's method or other non-linear optimization

Can we factorize M back to $\mathrm{K}[\mathrm{R} \mid \mathrm{T}]$?

- Yes! We can directly solve for the individual entries of $K[R \mid T]$.

$a_{n}=n t h$
 column of A
 Extracting camera parameters

$$
\left.\begin{array}{c}
\alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
t_{z} \\
\mathbf{b}
\end{array}\right\}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{R} & \mathrm{~T}
\end{array}\right]
$$

Box 1

$$
\mathrm{A}=\left[\begin{array}{l}
\mathbf{a}_{1}^{\mathrm{T}} \\
\mathbf{a}_{2}^{\mathrm{T}} \\
\mathbf{a}_{3}^{\mathrm{T}}
\end{array}\right] \quad \mathrm{b}=\left[\begin{array}{l}
\mathrm{b}_{1} \\
\mathrm{~b}_{2} \\
\mathrm{~b}_{3}
\end{array}\right]
$$

Estimated values

Intrinsic

$$
\begin{aligned}
& \rho=\frac{ \pm 1}{\left|\mathbf{a}_{3}\right|} \quad \begin{array}{c}
u_{o}=\rho^{2}\left(\mathbf{a}_{1} \cdot \mathbf{a}_{3}\right) \\
v_{o}=\rho^{2}\left(\mathbf{a}_{2} \cdot \mathbf{a}_{3}\right)
\end{array} \\
& \cos \theta=\frac{\left(\mathbf{a}_{1} \times \mathbf{a}_{3}\right) \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}{\left|\mathbf{a}_{1} \times \mathbf{a}_{3}\right| \cdot\left|\mathbf{a}_{2} \times \mathbf{a}_{3}\right|}
\end{aligned}
$$

Extracting camera parameters

$$
\frac{\mathcal{M}}{\rho}=(\begin{array}{c}
\alpha \boldsymbol{r}_{1}^{T}-\alpha \cot \theta \boldsymbol{r}_{2}^{T}+u_{0} \boldsymbol{r}_{3}^{T} \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T}+v_{0} \boldsymbol{r}_{3}^{T} \\
\boldsymbol{r}_{3}^{T} \\
\mathbf{A}
\end{array} \overbrace{\frac{\alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z}}{\sin \theta} t_{y}+v_{0} t_{z}}^{t_{z}}
$$

Intrinsic

$$
A=\left[\begin{array}{l}
\mathbf{a}_{1}^{\mathrm{T}} \\
\mathbf{a}_{2}^{\mathrm{T}} \\
\mathbf{a}_{3}^{\mathrm{T}}
\end{array}\right] \quad \mathrm{b}=\left[\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2} \\
\mathbf{b}_{3}
\end{array}\right]
$$

$$
\begin{aligned}
\alpha & =\rho^{2}\left|\mathbf{a}_{1} \times \mathbf{a}_{3}\right| \sin \theta \\
\beta & =\rho^{2}\left|\mathbf{a}_{2} \times \mathbf{a}_{3}\right| \sin \theta
\end{aligned}
$$

Estimated values

Extracting camera parameters

$$
\frac{\mathcal{M}}{\rho}=(\begin{array}{c}
\alpha \boldsymbol{r}_{1}^{T}-\alpha \cot \theta \boldsymbol{r}_{2}^{T}+u_{0} \boldsymbol{r}_{3}^{T} \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T}+v_{0} \boldsymbol{r}_{3}^{T} \\
\boldsymbol{r}_{3}^{T} \\
\mathbf{A}
\end{array} \overbrace{\frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z}}^{t_{z}}
$$

Extrinsic

$$
\mathbf{r}_{1}=\frac{\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}{\left|\mathbf{a}_{2} \times \mathbf{a}_{3}\right|} \quad \mathbf{r}_{3}=\frac{ \pm \mathbf{a}_{3}}{\left|\mathbf{a}_{3}\right|}
$$

$$
\mathbf{r}_{2}=\mathbf{r}_{3} \times \mathbf{r}_{1}
$$

$$
\mathrm{T}=\rho \mathrm{K}^{-1} \mathbf{b}
$$

Can we factorize M back to $\mathrm{K}[\mathrm{R} \mid \mathrm{T}]$?

- Yes! We can also use $R Q$ factorization (not $Q R$)
$-R$ in $R Q$ is not rotation matrix R; crossed names!
R (upper triangular or 'Right' triangular) is K
Q (orthogonal basis) is R
T, the last column of $[R \mid T]$, is $\operatorname{inv}(K)$ * last column of M .
- But you need to do a bit of post-processing to make sure that the matrices are valid. See http://ksimek.github.io/2012/08/14/decompose/

Recovering the camera center

Estimate of camera center

Oriented and Translated Camera

Great! So now I have K and Rt

Marker-based augmented reality.

- Define marker with known real-world geometry
- Find points on marker in image
- Estimate camera pose from corresponding 2D/3D points
- Render graphics from virtual camera with same pose

Great! So now I have K and Rt

 Building block for detailed reconstruction.Goal: reconstruct depth.
So far: we have 'calibrated' one camera.
Or, potentially two...

Summary

- Projections
- Rotation, translation, affine, perspective
- Cameras
- Lenses, apertures, sensors
- Pinhole camera model and camera matrix
- Intrinsic matrix
- Extrinsic matrix
- Recovering camera matrix using least squares regression

ONE DIFFICULT EXAMPLE...

