I, ROBOT
ISAAC ASIMOV

1950
FUTURE VISION

EYE ROBOT
CSCI 1430

2017 MWF 1pm 368
COMPUTER VISION
Why do good recognition systems go bad?

Why is Bag of Words at 70% instead of 90%?

• Learning method
 – Probably not such a big issue, unless you’re learning the representation (e.g., deep learning).

• Training Data
 – Huge issue, but not necessarily a variable you can manipulate.

• Representation
 – Are the local features themselves lossy?
 – What about feature quantization? That’s VERY lossy.
Scene Categorization

Oliva and Torralba, 2001

Coast Forest Highway Inside City Mountain Open Country Street Tall Building

Fei Fei and Perona, 2005

Bedroom Kitchen Living Room Office Suburb

Lazebnik, Schmid, and Ponce, 2006

Industrial Store

15 Scene Database
15 Scene Recognition Rate
SUN Database: Large-scale Scene Categorization and Detection

Jianxiong Xiao, James Hays†, Krista A. Ehinger, Aude Oliva, Antonio Torralba
Massachusetts Institute of Technology
† Brown University
How many object categories are there?

~10,000 to 30,000

Biederman 1987
abbey
airplane cabin
apple orchard
assembly hall
bakery
car factory
food court
lounge
397 Well-sampled Categories

...at least 100 unique images each.
Evaluating Human Scene Classification

Accuracy 98% 90% 68%
Scene category

- Inn (0%)
- Bayou (0%)
- Basilica (0%)

Most confusing categories

- Restaurant patio (44%)
- River (67%)
- Cathedral (29%)
- Chalet (19%)
- Coast (8%)
- Courthouse (21%)
Conclusion: humans can do it

• The SUN database is reasonably consistent and categories can be told apart by humans.

• With many very specific categories, humans get it right 2/3rds of the time from experience and from exploring the label space.

How do we classify scenes?
How do we classify scenes?

Different objects, different spatial layout
Which are the important elements?

Similar objects, and similar spatial layout

Different lighting, different materials, different “stuff”
Scene emergent features

“Recognition via features that are not those of individual objects but “emerge” as objects are brought into relation to each other to form a scene.” – Biederman 81

Suggestive edges and junctions

Simple geometric forms

Biederman, 1981

Biederman, 1981

Blobs

Textures

Bruner and Potter, 1969

Oliva and Torralba, 2001
Global Image Descriptors

- Tiny images (Torralba et al, 2008)
- Color histograms
- Self-similarity (Shechtman and Irani, 2007)
- Geometric class layout (Hoiem et al, 2005)
- Geometry-specific histograms (Lalonde et al, 2007)
- Dense and Sparse SIFT histograms
- Berkeley texton histograms (Martin et al, 2001)
- HoG 2x2 spatial pyramids
- Gist scene descriptor (Oliva and Torralba, 2008)
Global Texture Descriptors

Bag of words

- Sivic et al., ICCV 2005
- Fei-Fei and Perona, CVPR 2005

Non localized textons

- Walker, Malik. Vision Research 2004

Spatially organized textures

- M. Gorkani, R. Picard, ICPR 1994
- A. Oliva, A. Torralba, IJCV 2001

- S. Lazebnik, et al, CVPR 2006

Gabor filter

- Sinusoid modulated by a Gaussian kernel
Global scene descriptors: GIST

• The “gist” of a scene: Oliva & Torralba (2001)

http://people.csail.mit.edu/torralba/code/spatialenvelope/
Gist descriptor

Oliva and Torralba, 2001

Apply oriented Gabor filters over different scales.

Average filter energy per bin.

Similar to SIFT (Lowe 1999) applied to the entire image.

8 orientations
4 scales
$$\times 16$$ bins
512 dimensions

Example visual gists

Global features (I) ~ global features (I’)

Oliva & Torralba (2001)
Textons

Filter bank

Vector of filter responses at each pixel

Kmeans over a set of vectors on a collection of images

Malik, Belongie, Shi, Leung, 1999
Textons

Filter bank

K-means (100 clusters)

Malik, Belongie, Shi, Leung, 1999

Walker, Malik, 2004

label = bedroom

label = beach
Bag of words &
spatial pyramid matching

But any way to improve the quantization approach itself?

S. Lazebnik, et al, CVPR 2006
We already looked at the Spatial Pyramid

But today we’re not talking about ways to preserve *spatial* information…about quantization itself.
Better Bags of Visual Features

• More advanced quantization / encoding methods that are near the state-of-the-art in image classification and image retrieval.
 – Mixtures of Gaussians
 – Soft assignment (a.k.a. Kernel Codebook)
 – VLAD – Vectors of Locally-Aggregated Descriptors

• Deep learning has taken attention away from these methods.
Standard Kmeans Bag of Words

Motivation

Bag of Visual Words is only about **counting** the number of local descriptors assigned to each Voronoi region.

Why not including **other statistics**?

Motivation

Bag of Visual Words is only about counting the number of local descriptors assigned to each Voronoi region.

Why not including other statistics? For instance:

• mean of local descriptors ×
Motivation

Bag of Visual Words is only about **counting** the number of local descriptors assigned to each Voronoi region

Why not including **other statistics**? For instance:

- mean of local descriptors
- (co)variance of local descriptors

Mixture of Gaussians (GMM)

• GMM can be thought of as “soft” kmeans.
• Each component has a mean and a standard deviation along each direction (or full covariance)
Simple case: Soft Assignment

- “Kernel codebook encoding” by Chatfield et al. 2011.
- Cast a set of proportional votes (weights) to n most similar clusters, rather than a single ‘hard’ vote.
Simple case: Soft Assignment

• “Kernel codebook encoding” by Chatfield et al. 2011.
• Cast a set of proportional votes (weights) to n most similar clusters, rather than a single ‘hard’ vote.

• This is fast and easy to implement (try it for Project 4!) but it makes an inverted file index less sparse.
VLAD – Vectors of Locally-Aggregated Descriptors

Given a codebook \(\{\mu_i, i = 1 \ldots N\} \), e.g. learned with K-means, and a set of local descriptors \(X = \{x_t, t = 1 \ldots T\} \):

- \(\text{assign: } \text{NN}(x_t) = \arg\min_{\mu_i} ||x_t - \mu_i|| \)
VLAD – Vectors of Locally-Aggregated Descriptors

Given a codebook \(\{ \mu_i, i = 1 \ldots N \} \), e.g. learned with K-means, and a set of local descriptors \(X = \{ x_t, t = 1 \ldots T \} \):

- ① Assign: \(\text{NN}(x_t) = \arg \min_{\mu_i} \| x_t - \mu_i \| \)

- ②③ Compute: \(v_i = \sum_{x_t: \text{NN}(x_t) = \mu_i} x_t - \mu_i \)

VLAD – Vectors of Locally-Aggregated Descriptors

Given a codebook \(\{ \mu_i, i = 1 \ldots N \} \), e.g. learned with K-means, and a set of local descriptors \(X = \{ x_t, t = 1 \ldots T \} \):

1. assign: \(\text{NN}(x_t) = \arg\min_{\mu_i} \| x_t - \mu_i \| \)

2. compute: \(v_i = \sum_{x_t: \text{NN}(x_t) = \mu_i} x_t - \mu_i \)

3. concatenate \(v_i \)'s + \(\ell_2 \) normalize

A first example: the VLAD

A graphical representation of

$$v_i = \sum_{x_t: \text{NN}(x_t) = \mu_i} (x_t - \mu_i)$$

What about skipping quantization / summarization completely?
CalTech 101 (2004) – 100 object classes; mean images
What about skipping quantization / summarization completely?

In Defense of Nearest-Neighbor Based Image Classification
Boiman, Shechtman, Irani
Summary

• We’ve looked at methods to better characterize the distribution of visual words in an image:
 – Soft assignment (a.k.a. Kernel Codebook)
 – VLAD
 – No quantization
Learning Scene Categorization

Forest path Vs. all

Living - room Vs. all
Classifier: 1-vs-all SVM with histogram intersection, chi squared, or RBF kernel.

Humans [68.5]
A look into the results

Airplane cabin (64%)

Art gallery (38%)

All the results available on the web
Humans good
Comp. good

Humans bad
Comp. bad

Human good
Comp. bad

Human bad
Comp. good
How do we do better than 40%?

• Features from deep learning based on ImageNet allow us to reach 42%