
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Fast Asymmetric Learning for Cascade Face
Detection

Jianxin Wu, S. Charles Brubaker, Matthew D. Mullin, and James M. Rehg, Member, IEEE,

Abstract— A cascade face detector uses a sequence of node
classifiers to distinguish faces from non-faces. This paper presents
a new approach to design node classifiers in the cascade detector.
Previous methods used machine learning algorithms that simul-
taneously select features and form ensemble classifiers. We argue
that if these two parts are decoupled, we have the freedom to
design a classifier that explicitly addresses the difficulties caused
by the asymmetric learning goal. There are three contributions
in this paper. The first is a categorization of asymmetries in the
learning goal, and why they make face detection hard. The second
is the Forward Feature Selection (FFS) algorithm and a fast pre-
computing strategy for AdaBoost. FFS and the fast AdaBoost can
reduce the training time by approximately 100 and 50 times, in
comparison to a naive implementation of the AdaBoost feature
selection method. The last contribution is Linear Asymmetric
Classifier (LAC), a classifier that explicitly handles the asym-
metric learning goal as a well-defined constrained optimization
problem. We demonstrated experimentally that LAC results in
improved ensemble classifier performance.

Index Terms— Face detection, cascade classifier, asymmetry,
feature selection.

I. INTRODUCTION

THERE has been much progress in frontal face detection in
recent years. State of the art face detection systems can

reliably detect frontal faces at video rate. Various face detection
methods have been proposed [1]–[7].

Most face detectors use a pattern classification approach. A
classifier that can discriminate face patches from background non-
face patches is trained from a set of training examples. When a
new test image is presented, patches of all possible sizes and
positions are extracted and scaled to the same size as the training
samples. The trained classifier then decides whether a patch is a
face or not. This brute-force search strategy is used in most of
the face detection methods.

The classifiers used in early work on face detection, e.g. neural
networks [2] and SVM [5], were complex and computationally
expensive. Instead of designing a single complex classifier and
applying it to every possible patch, recently coarse-to-fine search
has been used to achieve computational efficiency. In early work,
Amit and Geman [8] designed a visual selection strategy which
was in effect a coarse-to-fine search process. The coarse-to-
fine search idea was popularized by Viola and Jones [7] using
explicitly a cascade of classifiers with increasing complexity,
illustrated in Fig. 1. An input patch was classified as a face
only if it passed tests in all the nodes. Most non-face patches
were quickly rejected by the early nodes. Cascade detectors have
demonstrated impressive detection speed and high detection rates.

Manuscript received ; revised .
The authors are with the School of Interactive Computing, College of

Computing, Georgia Institute of Technology, Atlanta, GA 30332.

H

1
d , f1

1

H2
Non-face

Non-face

2
d , f2

. . .

Hr

r
d , fr

Non-face Face

Fig. 1. Illustration of the cascade structure with r nodes, where Hi is the
ith node classifier, and di and fi are the detection rate and false positive rate
of the ith node, respectively.

In this paper we use the cascade structure, in order to ensure high
testing speed.1

There were three contributions in the Viola-Jones face detection
system: the integral image representation, the cascade framework,
and the use of AdaBoost to train cascade nodes. The cascade
framework allows background patches to be filtered away quickly.
The integral image representation can calculate the image features
extremely fast, which are called ‘rectangle features’ and are then
used in the node classifiers. The AdaBoost algorithm [10] is used
to select rectangle features and combine them into an ensemble
classifier in a cascade node. The integral image and the cascade
framework make the detector run fast, and AdaBoost is the key
to a cascade’s high detection rate.

AdaBoost performs two tasks simultaneously when it trains
a node classifier: selecting several rectangle features, and form-
ing an ensemble classifier using combination of these features.
However, these two processes are not necessarily tied together. In
this paper, we show that by decoupling the problems of feature
selection and ensemble classifier design, we can address the
fundamental difficulties in the learning problem explicitly. The
result is improved classification performance and faster training
speed. The contributions of this paper are summarized as three
points.

First, we categorize different forms of asymmetries in the face
detection problem and explain how they make face detection hard.
For example, while the positive class contains only faces and
requires only thousands of training images, the negative class
contains image patches from all over the world and requires
billions of training samples.

Second, we propose the Forward Feature Selection (FFS)
algorithm as an alternative way to select features in a cascade
node. FFS has similar detection accuracy as AdaBoost. It also
reduces the cascade’s training time by two orders of magnitude
compared to a naive implementation of AdaBoost. We also
present a faster implementation for the AdaBoost algorithm. FFS

1There exist other fast detection methods, e.g. the synergistic face detection
method [9].

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

is approximately 2 to 3 times faster than this new implementation
of AdaBoost. In addition, FFS only requires about 3% memory
usage as that of the faster AdaBoost implementation, which makes
it a natural choice in applications with a huge training set and a
big pool of features.

Third, we then propose the Linear Asymmetric Classifier
(LAC) to form ensemble classifiers. Decoupled from the feature
selection process, LAC has the freedom to explicitly address
the asymmetries in the face detection problem. Thus, LAC can
improve the node classifiers’ performances. For example, apply-
ing LAC to features selected by AdaBoost, we obtain a better
classifier than that provided by AdaBoost itself. LAC is efficient
and is easy to implement.

The rest of this paper is organized as follows. Section II
explains how the cascade framework helps solving difficulties in
the face detection problem and section III provides a survey of
related methods. FFS and a faster implementation for AdaBoost
are introduced in section IV, and LAC is described in section V.
Experimental results comparing FFS/LAC to other methods are
also presented. Section VI concludes this paper with discussions
of future work.

Preliminary versions of portions of this work have been pub-
lished in [11] and [12]. The FFS algorithm presented in this
paper is an improved version of the FFS algorithm in [11]. Some
new results are also presented in this paper, including analysis
of asymmetries in the face detection problem (section II and
III), a fast implementation of the AdaBoost method (section IV-
C), validity of LAC’s assumptions (section V-B), and additional
experimental results (Fig. 6, 9(c), and 10).

II. ANALYSIS OF THE CASCADE FACE DETECTOR

A. Asymmetries in face detection

We observe three asymmetries in the face detection problem:
uneven class priors, goal asymmetry, and unequal complexity
within the positive and negative classes. In this section, we will
discuss why these asymmetries make the classifier design problem
difficult. We want to point out that these asymmetries also apply
to the detection of all other objects (e.g. car detection).

The first asymmetry comes from the uneven class priors.
Among the millions of image patches generated from an input
image, only very few contain faces. The occurrence of a face
in an image is a rare event. In this sense, face detection (and
all other detection problems in vision) are rare event detection
problems. Methods designed to minimize error rate will classify
all instances as negative on such extremely uneven data sets. Thus
all faces will be missed. Another difficulty associated with this
unevenness is that the negative class usually has a huge amount
of data. Approximately 350 million non-face patches are used
in [7] to train a cascade. The flood of non-face patches makes
the learning algorithm train very slowly.

The second asymmetry comes from the difference in positive
and negative class learning goals. A high (e.g. 95%) detection rate
is required, because we do not want to lose a single face. However,
because of the huge amount of non-face data, an extremely low
false positive rate (e.g. 10−7) is necessary for reliable detection.
It is difficult for a single classifier to achieve such a learning goal.

The last asymmetry comes from the different composition
of the two classes. The positive class consists of only faces.
However, the negative class consists of image patches from a wide
range of scenes, which include a very large number of different

object categories: animals, trees, man-made objects, buildings,
and more. It is not hard to distinguish faces from cars. However,
it is much harder to distinguish faces from all other objects.

B. Cascade approach to asymmetric problems

The cascade structure alleviates the difficulties associated with
the three asymmetries described above.

Cascade classifier deals with the uneven data set via sampling.
The training set for each node classifier is balanced by sampling
roughly the same amount of non-face patches as the number
of faces. After a new node is trained, all non-face patches
which are correctly classified by this node are removed from
the pool of non-faces. So the number of non-face patches in the
pool decreases at an exponential speed. This data bootstrapping
strategy deals effectively with the huge amount of non-face data.
It was introduced in [1] as a way to find non-face samples that are
difficult to separate from faces. It is worth noting that sampling
is a widely used strategy to deal with uneven data sets in the
machine learning and data mining domains [13].

Goal asymmetry is also addressed by the cascade classi-
fier. Consider a cascade which consists of a set of nodes
H1, H2, . . . , Hr . Let O be the event that the testing instance is a
true face, and Ai be the event that Hi classifies it as a face. Then,
the detection rate D and false positive rate F of the cascade are
computed as

D = Pr [Ar, . . . , A1|O] =

r∏
i=1

di (1)

F = Pr
[
Ar, . . . , A1|Ō

]
=

r∏
i=1

fi (2)

by the chain rule, where di = Pr [Ai|Ai−1, . . . , A1, O] and fi =

Pr
[
Ai|Ai−1, . . . , A1, Ō

]
are the detection rate and false positive

rate of the ith node. The above equations do not assume that the
nodes make independent errors. The false positive rate F drops
to 0 exponentially with the depth of the cascade.

As a consequence of (1) and (2), it is natural to define the
learning goal of a cascade as: for every node, design a classifier
with very high (e.g. 99.9%) detection rate and only moderate (e.g.
50%) false positive rate.

This node learning goal is in principle easier to achieve
in comparison to the daunting 10−7 false positive rate goal
for a single classifier. However, the result is a cost-sensitive
learning problem. A false negative clearly costs more than a
false positive since we allow about 50% errors in the negative
class, but nearly no error can be allowed in the face class. Many
machine learning algorithms (including AdaBoost) are designed
to minimize error rates and usually do not work well on cost-
sensitive problems [13]. Viola and Jones proposed the AsymBoost
method [14] to handle this asymmetry. We will discuss the
drawbacks of AsymBoost and other asymmetric learning methods
in the related work (section III). We then propose the Linear
Asymmetric Classifier to deal with this cost asymmetry in section
V.

The asymmetry in class composition is taken care of by
increasing the complexity of the node classifiers. When more
nodes are used, the data bootstrapping process will make the node
negative training set contain more “face-like” patches, which are
hard to separate from faces. The node classifiers become more
complex, consequently. In [7], only 2 features were used in the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

first node, while 200 features were used for the last node. Since
most non-face patches are rejected by early nodes, a small number
of features are evaluated for these patches. This fact enables the
cascade to run at video rate.

III. RELATED WORK

We now review the literature on cascade-structured detectors
for faces and other objects. A comprehensive review of other face
detection approaches and techniques can be found in [15].

A. ‘Project and Reject’ detectors

One key aspect of the cascade detector is the ability to quickly
reject some candidate image patches. This intuition is utilized
in many face detection systems implicitly or explicitly. For
example, the neural network-based detector of Rowley et al. [2]
incorporated a manually-designed two node cascade structure for
improving the detection speed.

There are some other detectors which explicitly exploited the
idea of rejecting non-face patches in a cascade-like structure.
Most of these methods follow a ‘Project and Reject’ approach. In
the maximal rejection classifier approach [16] and the Antiface
approach [17], in each stage the input patch was projected in
a given direction and was rejected if the projected value was
beyond certain thresholds. In [18], a set of reduced set vectors
was calculated from a support vector machine. These vectors
were applied as projection directions sequentially. An alternative
cascade framework for SVM classifiers was proposed by Heisele
et al. [19]. Baker and Nayar proposed a theory of pattern rejection
for object recognition [20] using the project and reject procedure.

There are two major differences between these methods and
the Viola-Jones detector. First, cascade detectors used Haar-like
rectangle features [21]. Rectangle features can be extracted more
quickly, in comparison to the projection operation. Second, earlier
nodes in a cascade have smaller complexity than deeper nodes.
Since most non-face patches are rejected by these early nodes, the
cascade is able to run faster than those detectors whose nodes all
have the same complexity. Recently, Sahbi and Geman also used
a hierarchy of SVMs (organized as a tree) to detect faces [22].

B. Node training in a cascade framework

The remaining works that we will discuss are focused on the
Viola-Jones cascade framework. The central learning problem is
to construct a single node which satisfies the node learning goal.
Successive iterations of this procedure will result in a cascade.

As discussed above, it is the cost asymmetry (or cost-sensitive)
nature of this learning goal that makes it difficult. Many cost-
sensitive learning methods have been proposed. We are specifi-
cally interested in those variants of AdaBoost since the Viola-
Jones work has demonstrated that AdaBoost is an effective
method to learn a node. A naive approach based on modifying
the initial weight distribution was used by Schapire et al. in
text filtering [23]. However, it is pointed out by Viola and
Jones in [14] that, even if positive examples are assigned much
higher initial weights than negative examples, the difference is
absorbed quickly by AdaBoost. They proposed AsymBoost [14]
as a remedy, which continuously gave positive examples higher
weights at every training round. They applied AsymBoost to
face detection and showed that it had fewer false positives than
standard AdaBoost. The key idea is to put more weights on

positive examples than negative ones. Many other strategies to
apply this idea have been proposed in the machine learning and
data mining literature, e.g. AdaUBoost [24], AdaCost [25], and
the CSB family [26]: CSB0, CSB1 and CSB2. One characteristic
of these methods is that they all conflate the problem of selecting
features with the problem of designing an ensemble classifier.

There are other methods that are related to the node learning
goal, e.g. BMPM [27] and MRC [16]. BMPM is an asymmetric
learning algorithm, which maximizes an lower bound of the
detection rate while keeping the false positive rate smaller than
a constant. Additional discussion on these methods will be
presented in section V-D.

Several related works provide theoretical underpinnings for
cascade classifiers. Blanchard and Geman [28] analyzed the
designs of hierarchical testings from the statistical point of view,
which includes the cascade classifier as a special case. There are
also tools to analyze the generalization ability of a cascade. The
cascade structure is a special case of decision list, a data structure
introduced by Rivest [29]. Anthony gave generalization bounds
for threshold decision lists [30], which can be applied to cascade
detectors.

C. Other methods related to the cascade detector

We also briefly mention some other improvements to the cas-
cade detector, including new features, node and cascade classifier
training methods, and applications.

New features have been proposed, e.g. the rotated Haar-like
features [31]. Levi and Weiss studied various features to reduce
the number of training images [32]. Torralba et al. proposed a
way to efficiently share features for multi-class object detection,
although they did not use a cascade [33].

The learning algorithms used to train node classifiers are
another topic of interest. Lienhart et al. [31] experimentally eval-
uated different boosting algorithms and different weak classifiers.
They argued that Gentle AdaBoost and CART decision trees
had the best performance. Xiao et al. proposed the Boosting
Chain algorithm [34] to integrate “historical knowledge” into
the ensemble classifier. Li et al. incorporated floating search
into the AdaBoost algorithm (FloatBoost) for detecting multi-
view faces [35]. Liu and Shum proposed KLBoost to train a
node classifier, in which the weak classifiers were based on
histogram divergence of linear features [36]. It is worth noting
that in KLBoost the classifier design was also decoupled from
feature selection. In KLBoost, a linear classifier was learned using
gradient descent after features were selected.

The aforementioned research focused on improving a single
node classifier. In [37], Sun et al. considered the problem of
connecting the learning objectives of a node to the overall
cascade performance. They proposed a cascade indifference curve
framework to select the point of operation in a node classifier’s
ROC curve.

Besides improving the cascade face detector, researchers have
used the framework in other fields. A cascade approach has been
used (in some cases with substantial modifications) to detect
multi-view faces [35], [38], text [39], wiry objects [40], and
pedestrians [41].

IV. FAST FEATURE SELECTION

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Algorithm 1 The cascade framework
1: {Given a set of positive examples P , a set of initial nega-

tive examples N , and a database of bootstrapping negative
examples D. }

2: {Given a learning goal G.}
3: {The output is a cascade H = (H1, H2, . . . , Hr).}
4: i ⇐ 0, H ⇐ ∅
5: repeat
6: i ⇐ i + 1

7: NodeLearning { Learn Hi using P and N , add Hi to H }
8: Remove correctly classified non-face patches from N
9: Run the current cascade H on D, add any false detection

to N until N reaches the same size as the initial set.
10: until The learning goal G is satisfied

The cascade learning algorithm is shown in Algorithm 1. The
two major blocks in training a cascade are node learning (line 7)
and data bootstrapping (line 9).

In the Viola-Jones detector, the node learning algorithm is
AdaBoost, which does feature selection and classifier design
simultaneously. We decouple ‘NodeLearning’ into two separate
parts and propose Forward Feature Selection to perform the
feature selection task. We also describe a fast implementation
of AdaBoost to select features.

A. The Forward Feature Selection algorithm

In [7], AdaBoost was used to train the node classifier Hi in line
7 of Algorithm 1. AdaBoost is an iterative method for obtaining
an ensemble of weak classifiers by evolving a distribution of
weights, Dt, over the training set. In the Viola-Jones approach,
each iteration t of the boosting process adds the rectangle feature
ht with the lowest weighted error to the ensemble classifier. After
T rounds of boosting, the decision of the AdaBoost ensemble
classifier is defined as H(x) = sgn

(∑T
t=1 αtht(x)− θ

)
, where

the αt’s are the ensemble weights obtained by the AdaBoost
algorithm and θ is threshold of the ensemble. The flowchart
of a straightforward implementation of AdaBoost is shown in
Fig. 2(a), in which N and M are the numbers of training examples
and features, respectively.

AdaBoost picks the rectangle feature with the smallest
weighted error with respect to the weight distribution Dt. Dt

is updated every round, which in turn requires that the weak
classifiers were re-trained at every round, as indicated in Fig. 2(a).
In the face detection application, the number of training examples
and rectangle features are both in the order of thousands. Thus,
the re-training of rectangle features is the most time consuming
component in the algorithm. In [7], it took a few weeks to train
a complete cascade face detector.

We propose a new feature selection method based on Forward
Feature Selection (FFS), a greedy feature selection method [42].
After the features are selected, an ensemble classifier can be
formed by simple voting of the selected features. Pseudo-code for
the FFS algorithm for selecting features and building an ensemble
classifier for a single cascade node is given in Algorithm 2. The
corresponding flowchart is illustrated in Fig. 2(b).

Before getting into details of FFS, the flowcharts reveal the
intuition behind it. In Fig. 2(b), ‘Train all weak classifiers’, the
most time-consuming component, is moved out of the loop. That

Tra i n a l l w e a k c l a s s i f i e rs

A d d t h e f e a t u re w i t h
m i n i m u m w e i g h t e d e rro r

t o t h e e n s e m b l e

A d j u s t t h re s h o l d o f t h e
e n s e m b l e t o m e e t t h e

l e a rn i n g g o a l

O (NM Tl o g N)

O (T)

O (N)

(a) Naive AdaBoost implementation

 Tr a i n a l l w e a k c l a s s i f i e r s

A d d t h e f e a t u r e t o
m i n i m i z e e r r o r o f t h e
c u r r e n t e n s e m b l e

A d j u s t t h r e s h o l d o f t h e
e n s e m b l e t o m e e t t h e

l e a r n i n g g o a l

O (NM l o g N)

O (NM T)

O (N)

(b) Forward Feature Selection

Fig. 2. Diagram comparing the naive AdaBoost implementation and the FFS
algorithm for selecting features and forming a single node classifier.

is, the weak classifiers are trained for only once. In AdaBoost,
they need to be trained T times, where T is the number of features
in the AdaBoost ensemble. Since most of the training time is used
to train weak classifiers, FFS requires only 1/T training time as
that of AdaBoost. In summary, the key intuition in FFS is pre-
computing: the results of trained weak classifiers are stored and
re-used.

Both AdaBoost and FFS are greedy feature selection methods:
they pick up the ‘best’ feature they find in every round, based on
different criteria. There are three major differences between FFS
and AdaBoost.

First, there is no distribution maintained over the training
set in FFS. Each training example is treated equally. Thus, the
rectangle features are trained only once. Their corresponding
weak classifiers’ classification results are stored into a table V .
In the following feature selection part, table lookup operations
provide all the information needed about the rectangle features.
Thus, FFS greatly expedites the training process, with the cost of
the storage of a table V .

Second, after the features in an ensemble have been selected,
the ensemble classifier H(x) = sgn

(∑
h∈S h (x)− θ

)
is a ma-

jority vote. The total vote
∑

h∈S h (x) is an integer between 0
and T, the number of selected features. In contrast, the total vote
in AdaBoost is a real number.

Third, the criterion used in FFS to select features is that the
selected feature should make the ensemble classifier has smallest
error on the training set. In AdaBoost, the criterion is to choose
a feature with the smallest weighted error on the training set.

The FFS algorithm operates as follows. The first step is to train
all weak classifiers and store their classification results into a table
V . The set of selected features, S, is initialized to an empty set.
At every round, we examine every possible feature and select the
feature that most reduces the ensemble classifier’s error.

Given the candidate feature hi and S, it is easy to compute
the error rates of S′ = S ∪ {hi}. The sum of votes v′ for S′

is obtained by a vector addition (line 11 in Algorithm 2). As

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Algorithm 2 The Forward Feature Selection algorithm

1: {Given a set of examples {xi, yi}N
i=1, where N is the size of

the training set.}
2: {Given a set of rectangle features {hi}M

i=1, where M is the
number of rectangle features.}

3: {The output is an ensemble classifier, whose false positive
rate is 0.5. S is the set of selected features.}

4: for i = 1 to M do
5: Pick appropriate threshold for rectangle feature hi, such

that hi has smallest error on the training set
6: end for
7: Make a table Vij such that Vij = hi(xj), 1 ≤ i ≤ M, 1 ≤

j ≤ N

8: S ⇐ ∅, v ⇐ 01×N , where 01×N is a row vector of zeros.
9: for t = 1 to T do

10: for i = 1 to M do
11: S′ ⇐ S ∪ hi, v

′ ⇐ v + Vi:, where Vi: is the ith row of
V .

12: {H ′(x) = sgn
(∑

h∈S′ h (x)− θ
)

is the classifier as-
sociated with S′, and we can compute its value using
H ′(xi) = sgn(v′i − θ).}

13: Find the θ that makes H ′ has the smallest error rate
14: εi ⇐ the error rate of H ′ with the chosen θ value
15: end for
16: k ⇐ arg min1≤i≤M εi

17: S ⇐ S ∪ hk, v ⇐ v + Vk:

18: end for
19: {The output is H(x) = sgn

(∑
h∈S h (x)− θ

)
}

20: Adjust the value of θ such that H has a 50% false positive
rate on the training set.

discussed above, the components of v′ are integers between 0
and t, the round index number. Thus, the threshold θ can only
take values in the set {0, 1, . . . , t}. A histogram for v′ can be built
(how many positive/negative examples have 0 votes, 1 votes, etc.)
With this histogram, it is trivial to find the optimal value for θ,
which allows the ensemble classifier associated with S′ to have
the smallest error rate (line 13). We will later show that to train
a single feature requires O(N log N) time steps (refer to section
IV-B). It is easy to see that the overall time complexity of the
FFS algorithm is O(NMT + NM log N). These computational
complexity results are also shown in Fig. 2(a) and 2(b).

B. Complexity of the AdaBoost algorithm

Similarly, we can analyze the complexity of the AdaBoost
algorithm. The first step is to analyze the complexity of the weak
classifier training algorithm. When a rectangle feature is given,
the optimal threshold τ can only take value from a finite set: the
feature values at the training samples. After the feature values are
sorted, the error rate of a weak classifier with different thresholds
can be updated sequentially at all possible threshold values. This
algorithm is described in Algorithm 3, which is O(N log N).
The AdaBoost algorithm is thus O(NMT log N). As discussed
in section IV-A, FFS has complexity O(NMT + NM log N). In
face detection we have N � T � log N , which means that
FFS requires approximately 1

T + 1
log N of the training time of

AdaBoost.

Algorithm 3 Training a weak classifier

1: {Given a training set {xi, yi}N
i=1 with weights {wi}N

i=1, a
rectangle feature h, and its corresponding mask m}

2: Compute the feature values, v1, . . . , vN , where vi = xT
i m.

3: Sort the feature values as vi1 , . . . , viN
such that (i1, . . . , iN)

is a permutation of (1, . . . , N), and vi1 ≤ · · · ≤ viN

4: ε ⇐
∑

yi=−1 wi

5: for k = 1 to N do
6: if yik

= −1 then
7: ε ⇐ ε− wik

, εi ⇐ ε

8: else
9: ε ⇐ ε + wik

, εi ⇐ ε

10: end if
11: end for
12: k = arg min1≤i≤N εi, τ = xT

ik
m

13: The output is a weak classifier h(x) = sgn(xT m− τ)

C. Faster AdaBoost implementation

Careful examination of Algorithm 3 reveals that AdaBoost can
also be expedited by a pre-computing strategy. The feature values
vi and the permutations i1, . . . , iN do not change in different
rounds of AdaBoost. This part (line 2 and line 3 in Algorithm
3) only needs to be done once and the permutation vectors can
be stored in a table V for future use. Using such a permutation
table V , the weak classifier training is now O(N), and the
AdaBoost algorithm is O(NMT +NM log N). Other researchers
also independently suggested using a similar pre-computing idea,
e.g. in [43], [44].

We want to point out that FFS has lower memory requirement
than the faster AdaBoost implementation. In FFS, every entry in
the table V is a binary value and requires only 1 bit. However,
every entry in the table V in AdaBoost is an integer which uses
32 bits (in a 32-bit CPU). In applications with large number of
training examples and a large feature set (and consequently a large
table V), FFS may be a preferred feature selection method.

D. Experiments comparing FFS and AdaBoost

Although the computational complexity of the FFS and Ad-
aBoost algorithms can be analyzed, their detection performances
need to be compared experimentally. Both algorithms are used to
build cascade face detectors, and their performances are compared
on the MIT+CMU test set [2]. Two cascade face detectors were
trained using the FFS and AdaBoost algorithm, respectively. All
other aspects of the experimental setup were the same: the two
cascades were trained with the same training set, validation set,
abstract cascade algorithm, and learning goal. In all cascades we
trained, cascade nodes at the same depth all have the same number
of features. All cascades were evaluated using the same test set
and post-processing step.

Our training set contained 5000 example face images and 5000
initial non-face examples, all of size 24x24. We had a set of
4832 face images for validation purposes. We used approximately
2284 million non-face patches to bootstrap the non-face examples
between nodes (line 9 of Algorithm 1). We used 16233 features
sampled uniformly from the entire set of rectangle features. For
testing purposes we used the MIT+CMU frontal face test set
in all experiments. Although many researchers use automatic
procedures to evaluate their algorithm, we decided to manually

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0 50 100 150 200
number of false positives

de
te

ct
io

n
ra

te

AdaBoost

FFS

Fig. 3. ROC curves comparing cascade detectors using the AdaBoost and
FFS algorithm on the MIT+CMU test set.

count the missed faces and false positives.2 When scanning a test
image at different scales, the image is re-scaled repeatedly by a
factor of 1.25. Post-processing is similar to [7].

In the AdaBoost cascade, every node classifier is an AdaBoost
ensemble. In each node classifier, the weights of selected features
are set by the AdaBoost training algorithm. In the FFS cascade,
every node is an ensemble classifier too. In each node classifier,
we use FFS to select features, and the weights for all of the
selected features are set to 1. In both cascades, we adjust
thresholds of the node classifiers such that they have 50% false
positive rates.

Our cascade training algorithm terminates when the bootstrap-
ping non-face image database is depleted. Since our learning
goal requires that every cascade node has a false positive rate of
50%, all cascades should have approximately the same number of
nodes. However, we find that the AdaBoost cascade has 21 nodes,
but the FFS cascade has only 17 nodes. This discrepancy comes
from the fact that in FFS, every weak classifier has integer votes
(1 or -1). With only integer votes, FFS can not achieve an exact
50% false positive rate and we choose lower false positive rates
for each node in our experiments. The average false positive rate
of all nodes in the FFS cascade is 43.48%. So the FFS cascade
has fewer nodes3.

ROC curves of the AdaBoost cascade and the FFS cascade
are shown in Fig. 3. We construct the ROC curves by repeatedly
removing nodes from the cascades to generate points with in-
creasing detection and false positive rates. The curve between two
consecutive points is approximated by a line segment. The ROC
curves show that the FFS cascade has very close performance
to the AdaBoost cascade. In regions with more false positives
(>100), the AdaBoost classifier’s performance is slight better than
that of the FFS classifier. In regions with less false positives, the
FFS cascade has slightly better performance.

Experiments also showed other properties of the FFS algorithm.
Since the same cascade framework was used in the FFS cascade
and each node had the same number of features as the AdaBoost
cascade, the detection speed (test speed) should be about the
same as the AdaBoost cascade. The experiments showed that both

2We found that the criterion for automatically finding detection errors in
[31] was too loose. This criterion yielded higher detection rates and lower
false positive rates than manual counting.

3Since every node in the FFS cascade has a false positive rate lower than
50%, it will consume more bootstrapping non-face data than a cascade node
trained by AdaBoost (with 50% false positive rate). Thus the FFS cascade
consumes the bootstrapping non-face data more quickly and consequently
has fewer number of nodes.

cascade detectors did have very close testing speed.
Furthermore, although both FFS and faster implementation of

the AdaBoost algorithm has the same complexity O(NMT +

NM log N), the constant factor in FFS is smaller. To train a
node having the same number of features, experiments showed
that the faster implementation of AdaBoost usually took 2.5–3.5
times of the training time of FFS, and the original AdaBoost
implementation needed 50–150 times of the training time of FFS.

The fact that FFS has similar performance as AdaBoost sug-
gests that AdaBoost is not the only choice for the feature selection
method in training a cascade node. Other feature selection meth-
ods, such as FFS, can be used in place of AdaBoost and still
get good or even better performance. For a complete comparison
of feature selection methods in the cascade framework (including
FFS, CMIM [45] and various boosting methods), we refer the
reader to [46].

V. LINEAR ASYMMETRIC CLASSIFIER

We have presented FFS as an alternative to AdaBoost for
feature selection in cascade classifiers. This raises the question of
whether alternative methods for forming an ensemble classifier
from selected features could lead to performance improvements.
In particular, neither FFS or AdaBoost explicitly addresses the
difficulties caused by the asymmetries discussed in section II-
A. In this section, we propose the Linear Asymmetric Classifier
(LAC) which is designed to handle the asymmetric node learning
goal in the cascade framework: for every node, design a classifier
with very high (e.g. 99.9%) detection rate and only moderate (e.g.
50%) false positive rate.

A. The Linear Asymmetric Classifier
For the purpose of the LAC, we assume that appropriate

features have already been selected by other algorithms. For
example, AdaBoost, FFS, or information theory-based method
from [45] can be used to select features. We study the problem
of how to find an optimal linear classifier for the node learning
goal given these features. A detailed comparison to related work
on similar problems will be presented in section V-D.

The problem can be formalized as follows. Let x ∼ (x̄, Σx)

denote that x is drawn from a distribution with mean x̄ and covari-
ance matrix Σx. Note that we do not assume any specific form
of the distribution, except that its mean and covariance can be
estimated from samples. We are dealing with binary classification
problems with two classes x ∼ (x̄, Σx),y ∼ (ȳ, Σy), which are
fixed but unknown. Here x denotes a vector of feature values
of a positive example and y denotes that of a negative example.
Note that the notations in this section are different from previous
sections. Both x and y are used to denote feature vectors, in order
to emphasize the fact that the learning goals are asymmetric and to
make presentations more clear. Class labels of training examples
are obvious from the notation (x for positive and y for negative).
We use z to denote an example with unknown class label. The
linear classifier to be learned can be written as H = (a, b):

H(z) =

{
+1 if aT z ≥ b

−1 if aT z < b.

The asymmetric node learning goal is expressed as:

max
a 6=0,b

Pr
x∼(x̄,Σx)

{aT x ≥ b}

s.t. Pr
y∼(ȳ,Σy)

{aT y ≤ b} = β.
(3)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

In general this problem has no closed-form solution. In this
section, we will develop an approximate solution for it. Empirical
results show that it is effective to set β = 0.5 for all cascade
nodes. Thus, we will give a closed-form approximate solution
when β = 0.5.

Note that an AdaBoost classifier is a linear combination of
weak classifiers:

H(x) = sgn(Σ
T
t=1 atht(x)− b) = sgn(aT h(x)− b) (4)

in which h(x) is the vector of weak classifiers’ outputs. Thus
H(x) is a linear classifier in the feature space defined by
h(x). However, there is no guarantee that the (a, b) selected by
AdaBoost will satisfy (3) for a given choice of β. The same
argument applies to FFS. We seek a linear discriminant (a, b)

which maximizes the node learning goal in (3).
The key idea to solve this learning problem is to use the

cumulative distribution functions of aT x and aT y to replace the
Pr{} function.

Let xa denote the standardized version of aT x (x projected
onto the direction of a), i.e.

xa =
aT (x− x̄)√

aT Σxa
, (5)

obviously we have xa ∼ (0, 1). Let Ψx,a denotes the cumulative
distribution function (c.d.f.) of xa, i.e.

Ψx,a(b) = Pr{xa ≤ b}. (6)

ya and Ψy,a are defined similarly as

ya =
aT (y − ȳ)√

aT Σya
, (7)

Ψy,a(b) = Pr{ya ≤ b}. (8)

Thus, the constraint in (3) can be re-written as

β = Pr
{
aT y ≤ b

}
= Pr

{
aT (y − ȳ)√

aT Σya
≤ b− aT ȳ√

aT Σya

}

= Ψy,a

(
b− aT ȳ√
aT Σya

)
,

which in turn gives an expression for the optimal value of b:

b = aT ȳ + Ψ−1
y,a (β)

√
aT Σya (9)

where Ψ−1
y,a is the inverse function of Ψy,a. Note that Ψ−1

y,a

depends on both y and a. Similarly, the objective function in
(3) can be re-written as

1−Ψx,a

(
b− aT x̄√
aT Σxa

)
Using (9) to eliminate b and we obtain

1−Ψx,a

(
aT (ȳ − x̄) + Ψ−1

y,a(β)
√

aT Σya√
aT Σxa

)
.

Thus the constrained optimization problem (3) is equivalent to

min
a 6=0

Ψx,a

(
aT (ȳ − x̄) + Ψ−1

y,a(β)
√

aT Σya√
aT Σxa

)
. (10)

In (10), Ψx,a and Ψ−1
y,a depend on the distributions of x and y, in

addition to the projection direction a. Because we have no knowl-
edge of these distributions, we cannot solve (10) analytically. We
need to make some approximations to simplify it.

First, because the c.d.f. is monotonic, instead of minimizing
the complex function Ψx,a(·), we simply minimize its argument.
In other words, we approximately solve (10) by solving

min
a 6=0

aT (ȳ − x̄) + Ψ−1
y,a(β)

√
aT Σya√

aT Σxa
, (11)

or, equivalently,

max
a 6=0

aT (x̄− ȳ)−Ψ−1
y,a(β)

√
aT Σya√

aT Σxa
. (12)

There are several motivations that inspire the transformation from
(10) to (11).
• This transformation is approximate because in (10), the

function Ψx,a depends on a, while a also appears in the
argument of Ψx,a.

• If we assume that aT x is Gaussian for any a, then xa

is the standard normal distribution. Under this assumption,
Ψx,a does not depend on a any more, and (11) is exactly
equivalent to (10).

• Empirical evidence in section V-B suggests that aT x is
similar to a Gaussian. However, the tails of aT x gradually
move away from an ideal normal distribution.

• At the same time, the fact that aT x is similar to a Gaussian in
the face detection problem suggests that our approximation
will work well in practice.

Second, we assume that the median value of the distribution
ya is close to its mean. This assumption is true for all symmetric
distributions and is reasonable for many others. Under this as-
sumption, we have Ψ−1

y,a(0.5) ≈ 0. Thus for β = 0.5, (12) can be
further approximated by

max
a 6=0

aT (x̄− ȳ)√
aT Σxa

. (13)

Note that if we can make the stronger assumption that ya is a
symmetric distribution and β = 0.5, then we have Ψ−1

y,a(0.5) = 0.
The implication is that under these assumptions, (13) is exactly
equivalent to the node learning goal in (3). We call the linear
discriminant function determined by (13) the Linear Asymmetric
Classifier (LAC) and use it in the cascade learning framework.

The form of (13) is similar to the Fisher Discriminant Analysis
(FDA), which can be written as:

max
a 6=0

aT (x̄− ȳ)√
aT (Σx + Σy)a

. (14)

The only difference between FDA and LAC is that the pooled
covariance matrix Σx + Σy is replaced by Σx. This analogy
immediately gives us the solution to (13) as:

a∗ = Σ
−1
x (x̄− ȳ), b∗ = a∗T ȳ, (15)

under the assumption that Σx is positive definite. In applications
where Σx happens to be positive semi-definite, Σx + λI can be
used to replace Σx, where λ is a small positive number.

B. Empirical support for approximate Gaussianity

We have shown that if for any a, aT x is Gaussian and aT y

is symmetric, then LAC is guaranteed to be the optimal linear
classifier for the node learning goal. In this section we verify that
these assumptions are valid in the cascade face detector.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

45 50 55 60 65

0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99

0.997
0.999

Data

Pr
ob

ab
ili

ty

Normal Probability Plot

(a) Single

−3 −2 −1 0 1 2 3

0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99

0.997
0.999

Data

Pr
ob

ab
ili

ty

Normal Probability Plot

(b) Overlapped

Fig. 4. Normality test for aT x, in which x is a feature vector extracted from
face data, and a is drawn from the uniform distribution [0 1]T . Fig. 4(a) shows
result for a single a. Fig. 4(b) shows overlapped results for 10 different a’s.
Data in Fig. 4(b) are centered (i.e. means are subtracted).

40 45 50 55

0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99

0.997
0.999

Data

Pr
ob

ab
ili

ty

Normal Probability Plot

Fig. 5. Normality test for aT y, in which y is a feature vector extracted
from non-face data, and a is drawn from the uniform distribution [0 1]T .

Probability theory shows that x is Gaussian if and only if aT x

is Gaussian for all a’s. Obviously x is not Gaussian since all of its
components are binary random variables. However, experiments
show that aT x is approximately Gaussian for most reasonable
instantiations of a. Fig. 4(a) shows the normal probability plot of
aT x for a randomly drawn from the uniform distribution. aT x

fits closely to a normal distribution, only with small deviations at
the tails. Fig. 4(b) shows that aT x is approximately Gaussian for
all different a’s in our experiments.

Experiments also show that aT y fits nearly exactly to a
Gaussian (refer to Fig. 5). We tested the normality of aT y for
many non-face training data sets and different instantiations of
a, and aT y always fits a Gaussian distribution. Since centered
Gaussian distributions are symmetric, we can safely assume that
aT y is symmetric for all a’s.

TABLE I
SUMMARY OF THE KURTOSIS OF aT x AND aT y FOR 1000 DIFFERENT a’S

RANDOMLY DRAWN FROM THE UNIFORM DISTRIBUTION [0 1]T .

Kurt(aT x) Kurt(aT y)

mean -0.23 -0.02
standard deviation 0.05 0.07
min -0.38 -0.06
max -0.22 0.23

The normal probability plot is a way to visually examine
whether a distribution is normal or not. The kurtosis of a one
dimensional distribution provides a numerical evaluation of the
normality, since the kurtosis of a normal distribution is 0 and
nearly all non-Gaussian distributions have non-zero kurtosis.
Table I summarizes the kurtosis value of aT x and aT y for 1000
different a’s, all of which drawn randomly from the uniform
distribution [0 1]T . The result in table I confirms that for most
reasonable a, aT x is approximately Gaussian and aT y fits very
close to a normal distribution.

C. LAC in the cascade framework

When the rectangle features are used, the vector of their
corresponding weak classifiers’ output h(x) is often used as
features (refer to (4)). The rectangle features can be selected
by any feature selection method, e.g. AdaBoost, AsymBoost, or
FFS. The abstract cascade learning algorithm remains unchanged
(Algorithm 1), while the node learning algorithm is replaced by
a feature selector plus LAC. The new node learning algorithm is
shown in Algorithm 4.

Algorithm 4 LAC as a new node learning algorithm
1: {Given a training set composed of positive examples {xi}nx

i=1
and negative examples {yi}

ny

i=1, and a set of rectangle fea-
tures.}

2: {Given a feature selection method F}
3: {The output is a classifier with false positive rate 0.5}
4: Select T weak classifiers h = (h1, h2, . . . , hT) using F ,

where hi(z) = sgn(zT mi − τi)

5: For each training example, build a feature vector h(z) =

(h1(z), h2(z), . . . , hT (z)).
6: Estimate the mean and covariance:

x̄ =

∑nx
i=1 h(xi)

nx
, ȳ =

∑ny

i=1 h(yi)

ny
,

Σx =

∑nx
i=1 (h(xi)− x̄) (h(xi)− x̄)T

nx
,

Σy =

∑ny

i=1 (h(yi)− ȳ) (h(yi)− ȳ)T

ny
.

7: Applying (15) to get

a = Σ
−1
x (x̄− ȳ), b = aT ȳ

8: The output is a classifier

H (z) = sgn

(
T∑

t=1

atht(z)− b

)
= sgn

(
aT h(z)− b

)
(16)

When we want to apply FDA instead of LAC, we replace (15)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

with the following FDA solution:

a = (Σx + Σy)−1 (x̄− ȳ) . (17)

It is tempting to use the integral feature values zT mk − τk

directly as features in the LAC or FDA algorithm. However,
since zT mt − τt is a linear function of the input z, H (z) =

sgn
(∑T

t=1 at(z
T mt − τt)− b

)
is still a linear discriminant func-

tion and will not work for problems that are not linearly separable.
Since most visual classification tasks are not linearly separable,
we need to inject some non-linearity into the linear asymmetric
classifier. The sgn function in sgn(zT mt − τt) introduces the
necessary non-linearity into the features.

Both AdaBoost and LAC have the same form H (z) =

sgn
(
aT h (z)− b

)
and they share the same feature vector h(z).

The only difference between these two classifiers are the parame-
ters of the linear discriminant (a, b). In AdaBoost, ai is chosen in
step i of the AdaBoost procedure to minimize a margin-based cost
function [47]. This is a greedy procedure and ai is never changed
after its value is determined. Furthermore, AdaBoost does not take
into account the fact that the two classes are asymmetric. The
linear asymmetric classifier, on the contrary, is a global procedure
to seek the optimal vector a which optimizes the asymmetric loss
in (3).

Viola and Jones proposed AsymBoost [14] to accommodate the
asymmetry. In AsymBoost, sample weights were updated using

Dt+1 (i) =
Dt(i) exp (−yiht(xi)) exp

(
yi log

√
k
)

Zt

instead of the standard AdaBoost updating rule

Dt+1 (i) =
Dt(i) exp (−yiht(xi))

Zt
.

The extra term exp
(
yi log

√
k
)

causes the algorithm to gradually
pay more attention to positive samples in each round of boosting,
in which k is a parameter representing the level of asymmetry.
However, the resulting linear discriminant (a, b) is determined in
the same way as ordinary AdaBoost.

D. Comparison to previous work

There are other methods that are similar to the form of (13), e.g.
[27], [48], [49]. Researchers have also presented methods that are
related to the node learning goal. However, the node learning goal
was not explicitly defined and solved in these methods. In this
section we will examine the relationship between the proposed
LAC and other related classifiers.

Applying the Chebyshev inequality to (10), we can obtain a
related approximation to (10):

max
a 6=0

aT (x̄− ȳ)− κ (β)
√

aT Σya√
aT Σxa

, (18)

where κ(β) =
√

β
1−β . This approximation is used in the Biased

Minimax Probability Machine (BMPM) [27]. (18) is similar to
our objective (12). However, BMPM is derived under the minimax
principle [48], aiming at minimizing a worst case lower bound
of the objective function (10). LAC, on the other hand, uses
domain knowledge to eliminate the dependency on conditional
distributions, and provides an approximate solution to (10). In the
special case when y is Gaussian, BMPM gives the same solution
as LAC. [27, Theorem 5] also gives an interesting hint of why

aT x converges to Gaussian in high dimensional spaces. In short,
BMPM solves a more general class of problems than LAC (β
is not confined to 0.5), while LAC incorporates more domain
knowledge and gives better solutions for a more general set of
distributions of y (with equal mean and median for aT y).

Another related objective function comes from the Maximum
Rejection Classifier (MRC) [16], which can be written:

max
a 6=0

(
aT ȳ − aT x̄

)2
+ aT Σya

aT Σxa
. (19)

The solution of (19) requires solving a generalized eigenvalue
problem. The intuition behind (19) is to make the overlap between
the projections xa and ya small. The derivation of (19) in [16]
treats the two classes equally. Asymmetry in the MRC framework
results from the fact that the two classes have different prior
probabilities with P (x) � P (y). However, the effect of the
prior on y is reduced quickly as the stage-wise rejection process
continues. After a few rejections, P (x) is no longer negligible
in comparison to P (y). Under such conditions, (19) is not an
appropriate objective function.

A final comparison can be made between LAC and FDA. FDA
and LAC both have their own merits and drawbacks. We have
shown that when xa is normal, ya is symmetric, and β = 0.5,
LAC is indeed the optimal solution to the node learning goal.
However, when these assumptions are broken, LAC may be
suboptimal. The intuition in FDA is to maximize the (normalized)
separation between the two class means. It does not minimize the
error rate or the node learning goal. The advantage of FDA is
that it does not have constraints – performance will be reasonably
good if the class means are far apart. If we assume that x and y

have equal covariance matrices, then LAC is equivalent to FDA.

E. Experiments on LAC

We tested the performance of the linear asymmetric classifier
on both a synthetic data set and the face detection task. In the
synthetic data set, LAC is compared against BMPM, MRC and
FDA. For detection of faces, the cascade framework is used. Three
feature selectors are used: AdaBoost, AsymBoost, and FFS. We
compare three different ways to determine the linear discriminant
(a, b) after the features are selected. The first method is to use the
weights a and threshold b found by AdaBoost or AsymBoost; the
second method uses the proposed linear asymmetric classifier; the
third method uses Fisher Discriminant Analysis. We use “X+Y”
to denote the methods used in experiment, e.g. AdaBoost+LAC
means that the features are selected by AdaBoost and the linear
discriminant function is trained by LAC.

1) Results on Synthetic Data: Fig. 6 gives some intuition of
the difference between LAC and FDA. The positive data is drawn
from a normal distribution with mean (1.23, 1.23) and covariance
[10 0; 0 1]. The negative data is drawn from a normal distribution
with mean (0, 0) and covariance [1 0; 0 10]. LAC is guaranteed
to be optimal in this data set. It rejects 50% of the negative data,
while keeping almost all positive data. On the contrary, FDA
returns a boundary that also rejects 50% of the negative data,
but more than 13% of the positive data are rejected.

We also tested LAC on data sets where its assumptions were
broken. A synthetic data set was generated using the following
steps. Three distributions were created as: di = Aici + mi, i =

1, 2, 3, where ci ∼ N(0, I),mi ∼ N(0, 0.1I), and the elements

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

FDA

LAC

Fig. 6. Comparing LAC and FDA on synthetic data set when both x and y
are Gaussians.

Positive

N eg a tive

Fig. 7. Example of a synthetic data set where y is not symmetric.

of A were drawn randomly from a uniform distribution in [0 1].
The positive examples x were drawn from X = d1, and negative
examples y were drawn from Y = d2

2−d2
3. This choice produced

a Y which is not symmetric, and has a reasonable overlap
with X. One example of such a data set is shown in Fig. 7.
The training and test sets both contain 1000 samples, including
500 positive and 500 negative samples. Four linear discriminant
methods (LAC, FDA, MRC, and BMPM) were compared.4 In
each method, we determined the projection direction a using the
corresponding method. The threshold b was determined such that
on the training set the false positive rate was 50%. For every
method, the experiments were repeated 100 times. The averaged
test set accuracy on both classes are reported in Table II.

Although the negative class is not symmetric, LAC gives the
best performance, followed closely by FDA. Two-tailed paired
t-test shows that there is no significant difference between LAC
and FDA. Both the difference between LAC and MRC, and the
difference between LAC and BMPM are significant, at the 0.01
level.

In cascaded classifiers, the imbalance between the positive class
and the negative class is absorbed by the cascade structure. In each
node of a cascade, balanced training sets are usually used. This
is why we used a balanced training set in the above synthetic
data set. We also tested the performance of these classifiers
on imbalanced training set. Two extra sets of experiments were
performed. The training sets still had 500 positive examples, but
the negative class had 1000 and 1500 examples, respectively. The
examples were drawn from the same distributions as described
above. All four classifiers’ performances remained approximately
the same, despite the increase in the number of negative training
examples. Thus detailed error rates are not presented. Under both

4We used the Matlab toolbox for BMPM from http://www.cse.
cuhk.edu.hk/˜miplab/mempm_toolbox/.

TABLE II
RESULTS ON SYNTHETIC DATA SET.

Classifier Positive Negative
Accuracy Accuracy

LAC 96.11 50.04
FDA 95.12 49.96
MRC 90.19 49.96
BMPM 87.99 50.26

imbalance levels, LAC performed about the same as FDA, and
both LAC and FDA were better than MRC and BMPM.

2) Results on Face Detection: For face detection, we trained
9 different cascades, using the three feature selectors (AdaBoost,
AsymBoost, and FFS) and three linear discriminant functions
(using weights provided by the feature selector, LAC, or FDA).
Each cascade has 21 nodes, except that the AsymBoost+LAC
cascade has 22 nodes and the FFS cascade has 17 nodes. We
require that every node have 50% false positive rates and the
cascade training process is terminated when there are not enough
non-face patches to bootstrap. In order to make the face detector
run at video speed, the first node uses only 7 features. We use
more features as the node index increases (the last node used 200
features).

We consider two types of performance measures: node and
cascade. The node performance measure is the classifiers’ ability
to achieve the node learning goal. Given a trained cascade, each
node has an associated training set, which is generated by the
bootstrapping process. We collected all such training sets from
the 9 trained cascades. Given one such training set, different
algorithms are required to achieve the criteria in (3). Their perfor-
mance is evaluated using the validation set. The node performance
measure is useful because it directly compares the ability of
each method to achieve the node learning goal. The cascade
performance measure compares the performance of the entire
cascade. The performance of a cascade depends upon more than
just the classifier that is used to train the nodes. The background
data bootstrapping step and post processing step in face detection
also have significant effect on each cascade’s performance. The
cascade performance measure is evaluated using the MIT+CMU
benchmark test set.

The node comparison results are shown in Fig. 8. We did
not perform the node comparison for the FFS algorithm, since
FFS enforced all weights to be 1 and was not in the same
hypothesis space as AdaBoost, FDA, or LAC. We collected the
training set from the remaining 6 cascades, using the other two
feature selectors (AdaBoost and AsymBoost) and three linear
discriminant functions. The AdaBoost cascade is the same one
as used in section IV-D.5

We are able to observe the effects of using FDA or LAC to train
a linear discriminant function instead of using the values provided
by the AdaBoost (or AsymBoost) algorithm. From the results in
Fig. 8, it is obvious that both FDA and LAC can greatly reduce the
false negative rates (i.e. increase the detection rates). In Fig. 8(a),
averaged over the 11 nodes shown, AdaBoost+FDA reduces the
false negative rates by 31.5% compared to AdaBoost, while in
Fig. 8(c) AdaBoost+LAC reduces it by 22.5%. When AsymBoost

5The source code for training a cascade using methods described in this
paper is available online at http://www.cc.gatech.edu/˜wujx. We
also provide trained cascades, demo executables, and a video showing testing
results.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

0

0. 01

0. 02

0. 03

0. 04

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1
node number

fal
se
 ne

ga
tiv

e r
ate

A d a B o o s t
A d a B o o s t + F D A

(a) AdaBoost vs FDA

0

0. 01

0. 02

0. 03

0. 04

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1
node number

fal
se
 ne

ga
tiv

e r
ate

A s y m B o o s t
A s y m B o o s t + F D A

(b) AsymBoost vs FDA

0

0. 01

0. 02

0. 03

0. 04

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1
node number

fal
se
 ne

ga
tiv

e r
ate

A d a B o o s t
A d a B o o s t + L A C

(c) AdaBoost vs LAC

0

0. 01

0. 02

0. 03

0. 04

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 20 21 22
node number

fal
se
 ne

ga
tiv

e r
ate

A s y m B o o s t
A s y m B o o s t + L A C

(d) AsymBoost vs LAC

0

0. 01

0. 02

0. 03

0. 04

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1
node number

fal
se
 ne

ga
tiv

e r
ate

A d a B o o s t
A d a B o o s t + F D A
A d a B o o s t + L A C

(e) AdaBoost vs FDA & LAC

0

0. 01

0. 02

0. 03

0. 04

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1
node number

fal
se
 ne

ga
tiv

e r
ate

A s y m B o o s t
A s y m B o o s t + F D A
A s y m B o o s t + L A C

(f) AsymBoost vs FDA & LAC

Fig. 8. Experiments comparing different linear discriminant functions. The y axis shows the false negative rate when β = 0.5. In 8(a), training sets are
collected from the AdaBoost+FDA cascades’ node 11 to 21 (x axis shows the node number). AdaBoost and AdaBoost+FDA are compared using these training
sets. Similarly, 8(b)-8(f) used training sets from the AsymBoost+FDA, AdaBoost+LAC, AsymBoost+LAC, AdaBoost, and AsymBoost cascades respectively.
We do not show results when the data set index is less than 11, for space constraint.

0.86
0.87
0.88
0.89
0.9

0. 9 1
0. 9 2
0. 9 3
0. 9 4

0. 9 5
0. 9 6

0 5 0 1 00 1 5 0 200
number of false positives

de
te
ct
io
n
ra
te

A d a B o o s t
A d a B o o s t + F D A
A d a B o o s t + L A C

(a) AdaBoost vs FDA & LAC

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0 5 0 1 00 1 5 0 200
number of false positives

de
te
ct
io
n
ra
te

A s y m B o o s t
A s y m B o o s t + F D A
A s y m B o o s t + L A C

(b) AsymBoost vs FDA & LAC

0.84

0.86

0.88

0.9

0. 9 2

0. 9 4

0. 9 6

0 50 1 00 1 50 200 250
number of false positives

de
te
ct
io
n
ra
te

F F S
F F S + F D A
F F S + L A C

(c) FFS vs FDA & LAC

Fig. 9. Experiments comparing cascade performances on the MIT+CMU test set. The x axis is the number of false positives. The y axis is the detection
rate.

is used as the feature selector, the reductions are 27.3% and
17.3%, respectively. In Fig. 8(a) to 8(d), training sets came from
FDA or LAC cascades. We also compare node performance when
the training sets came from the AdaBoost or AsymBoost cascade.
Results are shown in Fig. 8(e) and 8(f). Both FDA and LAC work
better than the original AdaBoost and AsymBoost.

Cascade comparison results are shown in Fig. 9. The x axis is
the total number of false positives in the MIT+CMU test set. The
y axis is the detection rate. Fig. 9(a)-9(c) show the results when
AdaBoost, AsymBoost, or FFS is used as the feature selector,
respectively. These ROC curves show that both FDA and LAC
have significant advantages over the linear discriminant provided
by AdaBoost, AsymBoost, and FFS. It coincides well with the
node performances in Fig. 8.

Another way to interpret Fig. 9 is to compare the number of
false positives at a same detection rate. LAC can greatly reduce
false positives. For example, in Fig. 9(a), averaged over the range
of possible detection rates, AdaBoost+LAC reduces the number
of false positives by 36.1% compared with AdaBoost.

3) Discussions: Three observations from the experimental
results are worthy of further discussions.

First, the improvement of LAC over AsymBoost is smaller

0.86
0.87
0.88
0.89
0.9

0. 9 1
0. 9 2
0. 9 3
0. 9 4

0. 9 5
0. 9 6

0 500 1000 1500
number of false positives

de
te
ct
io
n
ra
te

A d a B o o s t
A d a B o o s t + F D A
A d a B o o s t + L A C

Fig. 10. Experiments comparing cascade performances on the MIT+CMU
test set. The x axis is the number of false positives without post-processing.

than that of LAC over AdaBoost. Our conjecture is that since
AsymBoost already takes into account the asymmetry when it
selects features, LAC has smaller space to improve.

Second, the error reduction effects of FDA or LAC in Fig. 8
are more significant than those in Fig. 9. We conjecture that the
background data bootstrapping and post processing remove part
of the error reducing effects.

The effect of post-processing can be studied by evaluating
the cascade detector without performing the post-processing step.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

The results without post-processing when AdaBoost was used are
shown in Fig. 10. Comparing Fig. 9(a) and 10, we find that the
post-processing step does not change the relative performances
of different algorithms, since these two figures are very similar
to each other. However, post-processing can greatly reduce the
absolute number of false positives.

Third, we find that FDA works better than LAC in a few cases.
LAC is derived under the assumptions that xa is Gaussian and
ya is symmetric. However, from Fig. 4(a) and Fig. 5 we find that
although ya is always symmetric, xa slightly deviates from the
Gaussian distribution at the tails. This might be the reason why
LAC does not perform the best in some cases.

VI. CONCLUSIONS

We have presented a new approach to designing a node
classifier in a cascade detector. Previous methods used machine
learning algorithms that simultaneously select features and form
ensemble classifiers. We analyzed the asymmetries inherent in
the face detection problem and why these asymmetries make
the problem difficult. We then argued that if we decouple the
feature selection step from the classifier design step, we have
the freedom to use different feature selection methods. More
importantly, we have the freedom to design an ensemble classifier
that explicitly addresses the asymmetries in its learning goal. We
proposed FFS as the new feature selection method, and LAC as
the new classifier.

The contributions of this paper can be summarized into three
points. The first contribution is an analysis of the cascade detector.
Three types of asymmetries are categorized: uneven class priors,
goal asymmetry, and the unequal complexity of the positive
and negative class. We argued that these asymmetries are the
characteristics of the face detection problem that make it hard
to solve. A literature survey of computer vision and machine
learning researches to deal with these asymmetries are also
provided.

The second contribution is Forward Feature Selection, the fea-
ture selection part of our new decoupled node learning algorithm.
We also propose a faster implementation method for the AdaBoost
algorithm. On one hand, FFS provides an alternative feature
selection method. The classifier formed by voting the FFS features
has similar accuracy as the AdaBoost method. On the other hand,
FFS is computationally attractive. FFS is two orders of magnitude
faster than the naive implementation of AdaBoost. FFS is also 2.5
to 3.5 times faster than the faster implementation of AdaBoost,
but only requires about 3% memory usage as that of AdaBoost.

The third contribution is Linear Asymmetric Classifier, the
classifier design part of the decoupled node learning algorithm.
The asymmetries are taken care of by LAC as a well-defined con-
strained optimization problem. By incorporating domain knowl-
edge (or assumptions about the data), LAC solves this complex
optimization problem approximately in closed form and a com-
putationally efficient manner. The derivation of LAC also gives
some hints to interesting characteristics of the face detection data
sets. Experiments on both synthetic and MIT+CMU benchmark
show that LAC can greatly reduce the errors. In addition, we also
applied Fisher’s Discriminant Analysis to features extracted by
AdaBoost and got improved results.

Despite its effectiveness, there are limitations in our node learn-
ing algorithm. We describe these limitations and propose some
future work that are possible ways to address these limitations.

• One of the conditions for LAC to be optimal is β = 0.5.
However, in applications other than face detection, β 6= 0.5

may be required. Other asymmetric learning methods, such
as BMPM [27], might be used in these cases.

• LAC is a linear classifier. It is possible to extend LAC to
a non-linear classifier (for example, use the kernel method).
Will this non-linear extension improve the classifier’s per-
formance?

• We observed that FDA outperformed LAC in some cases and
we conjecture that this is because aT x is only approximately
Gaussian. Is it possible to design a new feature selection
method which guarantees aT x to be normally distributed?

• It is also desirable to have a feature selection method
that take into account the asymmetric learning goal in a
principled way.

ACKNOWLEDGMENT

This work was supported by US National Science Foundation
(NSF) Grants ITR-0205507.

REFERENCES

[1] K. Sung and T. Poggio, “Example-based learning for view-based human
face detection,” IEEE Trans. PAMI, vol. 20, no. 1, pp. 39–51, 1998.

[2] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face
detection,” IEEE Trans. PAMI, vol. 20, no. 1, pp. 23–38, 1998.

[3] H. Schneiderman and T. Kanade, “A statistical model for 3D object
detection applied to faces and cars,” in Proc. CVPR, 2000, pp. 746–751.

[4] M.-H. Yang, D. Roth, and N. Ahuja, “A SNoW-based face detector,” in
NIPS 12, 2000, pp. 862–868.

[5] E. Osuna, R. Freund, and F. Girosi, “Training support vector machines:
An application to face detection,” in Proc. CVPR, 1997, pp. 130–136.

[6] F. Fleuret and D. Geman, “Coarse-to-fine face detection,” IJCV, vol. 41,
no. 1-2, pp. 85–107, 2001.

[7] P. Viola and M. Jones, “Robust real-time face detection,” IJCV, vol. 57,
no. 2, pp. 137–154, 2004.

[8] Y. Amit and D. Geman, “A computational model for visual selection,”
Neural Computation, vol. 11, no. 7, pp. 1691–1715, 1999.

[9] R. Osadchy, M. Miller, and Y. LeCun, “Synergistic face detection and
pose estimation with energy-based model,” in NIPS 17, 2005, pp. 1017–
1024.

[10] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the
margin: A new explanation for the effectiveness of voting methods,”
The Annals of Statististics, vol. 26, no. 5, pp. 1651–1686, 1998.

[11] J. Wu, J. Rehg, and M. Mullin, “Learning a rare event detection cascade
by direct feature selection,” in NIPS 16, 2004, pp. 1523–1530.

[12] J. Wu, M. Mullin, and J. Rehg, “Linear asymmetric classifier for
cascade detectors,” in Proc. 22nd International Conference on Machine
Learning, 2005, pp. 993–1000.

[13] G. M. Weiss, “Mining with rarity: a unifying framework,” ACM SIGKDD
Explorations Newsletter, vol. 6, no. 1, pp. 7–19, 2004.

[14] P. Viola and M. Jones, “Fast and robust classification using asymmetric
AdaBoost and a detector cascade,” in NIPS 14, 2002, pp. 1311–1318.

[15] M.-H. Yang, D. J. Kriegman, and N. Ahujua, “Detecting faces in images:
a survey,” IEEE Trans. PAMI, vol. 24, no. 1, pp. 34–58, 2002.

[16] M. Elad, Y. Hel-Or, and R. Keshet, “Pattern detection using a maximal
rejection classifier,” Pattern Recognition Letters, vol. 23, no. 12, pp.
1459–1471, 2002.

[17] D. Keren, M. Osadchy, and C. Gotsman, “Antifaces: A novel, fast
method for image detection,” IEEE Trans. PAMI, vol. 23, no. 7, pp.
747–761, 2001.

[18] S. Romdhani, P. Torr, B. Schoelkopf, and A. Blake, “Computationally
efficient face detection,” in Proc. ICCV, 2001, pp. 695–700.

[19] B. Heisele, T. Serre, S. Mukherjee, and T. Poggio, “Feature reduction
and hierarchy of classifiers for fast object detection in video images,”
in Proc. CVPR, 2001, pp. II:18–24.

[20] S. Baker and S. Nayar, “Pattern rejection,” in Proc. CVPR, 1996, pp.
544–549.

[21] C. Papageorgiou, M. Oren, and T. Poggio, “A general framework for
object detection,” in Proc. ICCV, 1998, pp. 555–562.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

[22] H. Sahbi and D. Geman, “A hierarchy of support vector machines for
pattern detection,” Journal of Artificial Intelligence Research, vol. 7, pp.
2087–2123, 2006.

[23] R. E. Schapire, Y. Singer, and A. Singhal, “Boosting and rocchio applied
to text filtering,” in SIGIR, 1998, pp. 215–223.

[24] G. J. Karakoulas and J. Shawe-Taylor, “Optimizing classifiers for
imbalanced training sets,” in NIPS 11, 1999, pp. 253–259.

[25] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan, “Adacost: Mis-
classification cost-sensitive boosting,” in Proceedings of the Sixteenth
International Conference on Machine Learning, 1999, pp. 97–105.

[26] K. M. Ting, “A comparative study of cost-sensitive boosting algorithms,”
in Proceedings of the Seventeenth International Conference on Machine
Learning, 2000, pp. 983–990.

[27] K. Huang, H. Yang, I. King, M. Lyu, and L. Chan, “The minimum error
minimax probability machine,” Journal of Machine Learning Research,
vol. 5, pp. 1253–1286, 2004.

[28] G. Blanchard and D. Geman, “Sequential testing designs for pattern
recognition,” Annals of Statistics, vol. 33, no. 3, pp. 1155–1202, 2005.

[29] R. L. Rivest, “Learning decision lists,” Machine Learning, vol. 2, no. 3,
pp. 229–246, 1987.

[30] M. Anthony, “Generalization error bounds for threshold decision lists,”
Journal of Machine Learning Research, vol. 5, pp. 189–217, 2004.

[31] R. Lienhart, A. Kuranov, and V. Pisarevsky, Empirical Analysis of
Detection Cascades of Boosted Classifiers for Rapid Object Detection,
ser. Lecture Notes in Computer Science, 2003, vol. 2781, pp. 297–304.

[32] K. Levi and Y. Weiss, “Learning object detection from a small number
of examples: the importance of good features,” in Proc. CVPR, 2004,
pp. II:53–60.

[33] A. Torralba, K. Murphy, and W. Freeman, “Sharing features: Efficient
boosting procedures for multiclass object detection,” in Proc. CVPR,
2004, pp. II:762–769.

[34] R. Xiao, L. Zhu, and H.-J. Zhang, “Boosting chain learning for object
detection,” in Proc. ICCV, 2003, pp. 709–715.

[35] S. Li, Z. Zhang, H.-Y. Shum, and H. Zhang, “FloatBoost learning for
classification,” in NIPS 15, 2003, pp. 993–1000.

[36] C. Liu and H.-Y. Shum, “Kullback-leibler boosting,” in Proc. CVPR,
2003, pp. I:587–594.

[37] J. Sun, J. M. Rehg, and A. F. Bobick, “Automatic cascade training with
perturbation bias,” in Proc. CVPR, 2004, pp. II:276–283.

[38] M. J. Jones and P. Viola, “Fast multi-view face detection,” TR2003-96,
MERL, Tech. Rep., 2003.

[39] X. Chen and A. Yuille, “Detecting and reading text in natural scenes,”
in Proc. CVPR, 2004, pp. II:366–373.

[40] O. Carmichael and M. Hebert, “Shape-based recognition of wiry ob-
jects,” in Proc. CVPR, 2003, pp. II:401–408.

[41] P. Viola, M. J. Jones, and D. Snow, “Detecting pedestrians using patterns
of motion and appearance,” in Proc. ICCV, 2003, pp. 734–741.

[42] A. R. Webb, Statistical Pattern Recognition. New York: Oxford
University Press, 1999.

[43] S. Avidan and M. Butman, “The power of feature clustering: An
application to object detection,” in NIPS 17, 2005, pp. 57–64.

[44] L. Ren, G. Shakhnarovich, J. K. Hodgins, H. Pfister, and P. A. Viola,
“Learning silhouette features for control of human motion,” ACM Trans.
Graph., vol. 24, no. 4, pp. 1303–1331, 2005.

[45] F. Fleuret, “Fast binary feature selection with conditional mutual infor-
mation,” Journal of Machine Learning Research, vol. 5, pp. 1531–1555,
2004.

[46] S. Brubaker, J. Wu, J. Sun, M. Mullin, and J. Rehg, “On the design of
cascades of boosted ensembles for face detection,” GVU center, Georgia
Institute of Technology, Tech. Rep. GIT-GVU-05-28, 2005.

[47] L. Mason, J. Baxter, P. L. Bartlett, and M. Frean, “Functional gradient
techniques for combining hypotheses,” in Advances in Large Margin
Classifiers. MIT Press, 2000, pp. 221–246.

[48] G. Lanckriet, L. E. Ghaoui, C. Bhattacharyya, and M. Jordan, “A
robust minimax approach to classification,” Journal of Machine Learning
Research, vol. 3, pp. 555–582, 2002.

[49] S.-J. Kim, A. Magnani, S. Samar, S. Boyd, and J. Lim, “Pareto optimal
linear classification.” in Proc. ICML, 2006, pp. 473–480.

Jianxin Wu received the BS degree and ME degree
in computer science, both from the Nanjing Uni-
versity, China. He is currently working toward the
PhD degree in Georgia Institute of Technology under
the supervision of Dr. James M. Rehg. His research
interests are computer vision and machine learning.

S. Charles Brubaker received the BS degree in
engineering from Swarthmore College with high
honors in 2002 and the MS degree from the Georgia
Institute of Technology in 2006. His research inter-
ests include computer vision, computational learning
theory, and algorithms.

Matthew D. Mullin received a BA degree in Math-
ematics from Princeton University in 1990. He is
currently a research scientist at the Georgia Insti-
tute of Technology in the College of Computing.
His research interests include computer vision and
machine learning.

James M. Rehg received his PhD degree in Elec-
trical and Computer Engineering from the Carnegie
Mellon University. He is an Associate Professor in
the College of Computing at the Georgia Institute
of Technology. He is a member of the Graphics, Vi-
sualization, and Usability Center and co-directs the
Computational Perception Lab. His research interests
are computer vision, robotics, machine learning, and
computer graphics. He is a member of the IEEE.

