Human Computation and Computer Vision

CS143 Computer Vision James Hays, Brown University

24 hours of Photo Sharing

installation by Erik Kessels

And sometimes Internet photos have useful labels

Im2gps. Hays and Efros. CVPR 2008

But what if we want more?

Image Categorization

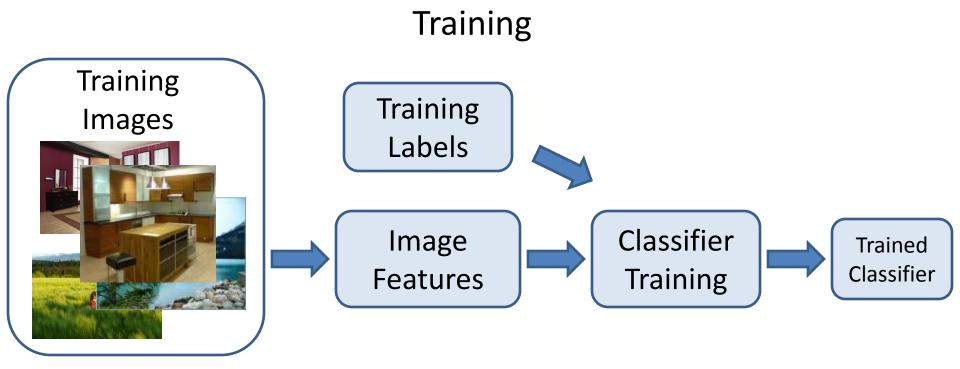
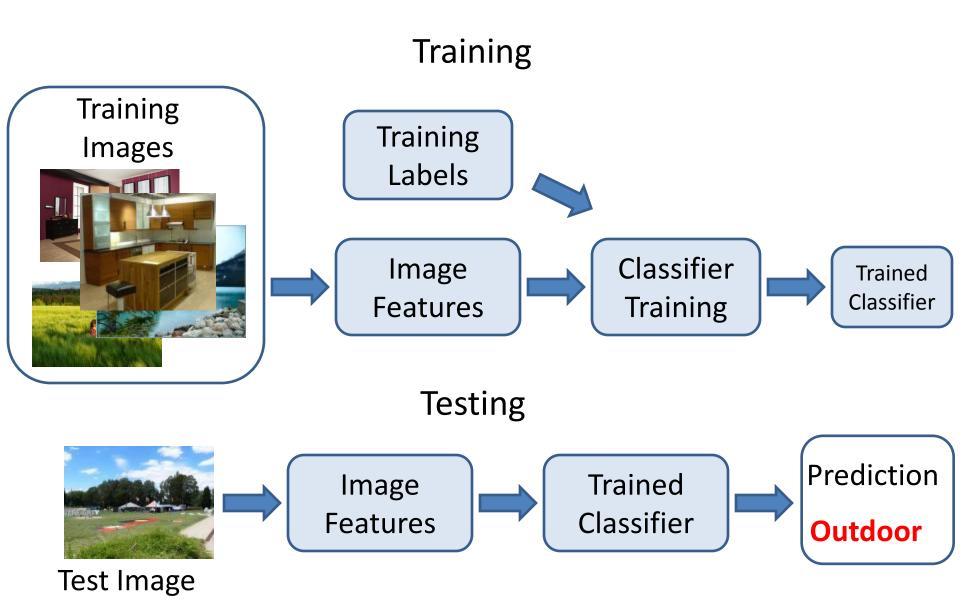
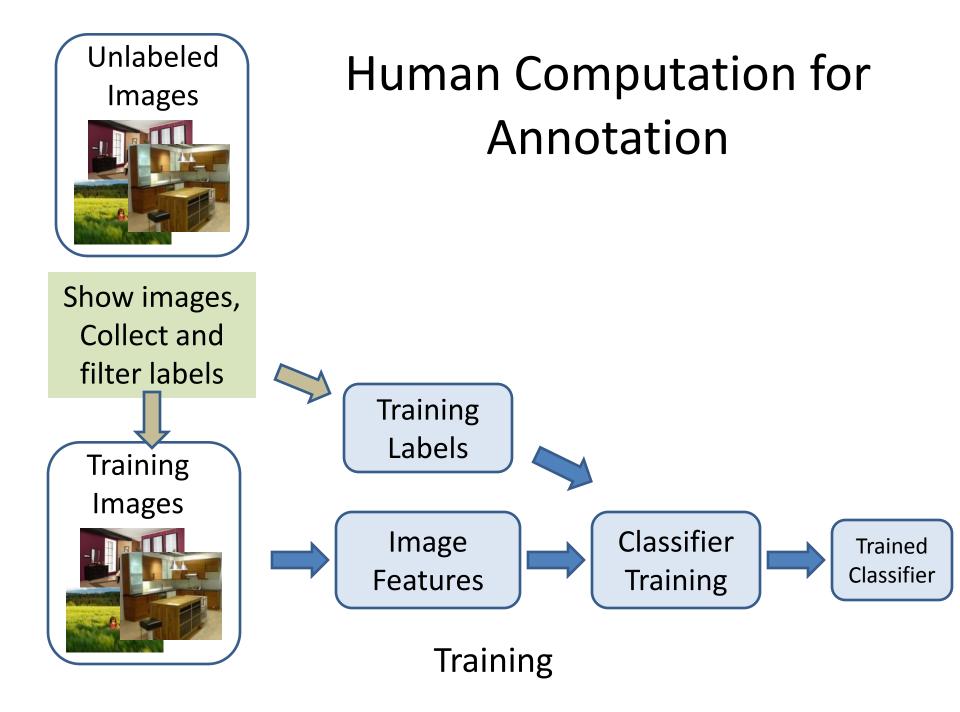
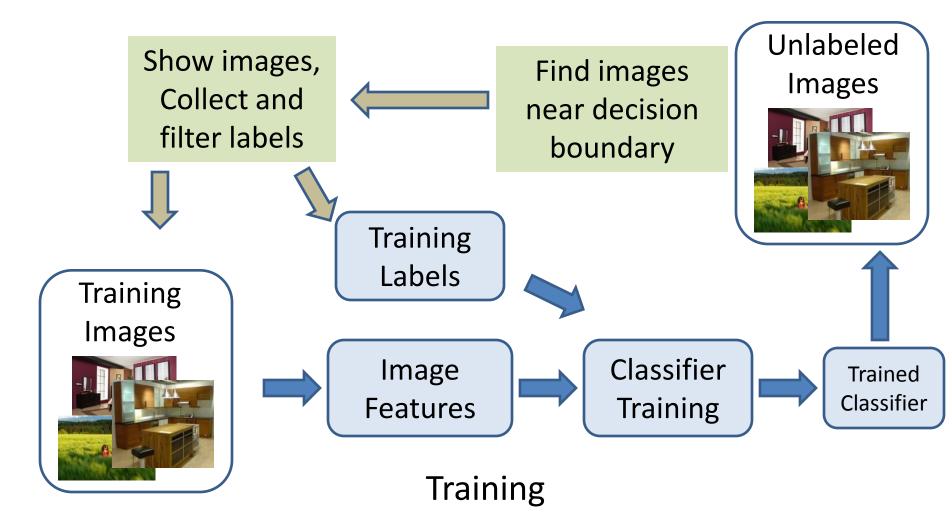


Image Categorization

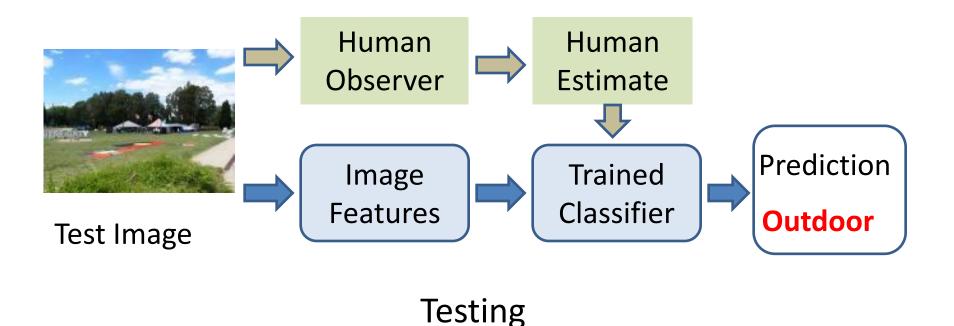




Active Learning

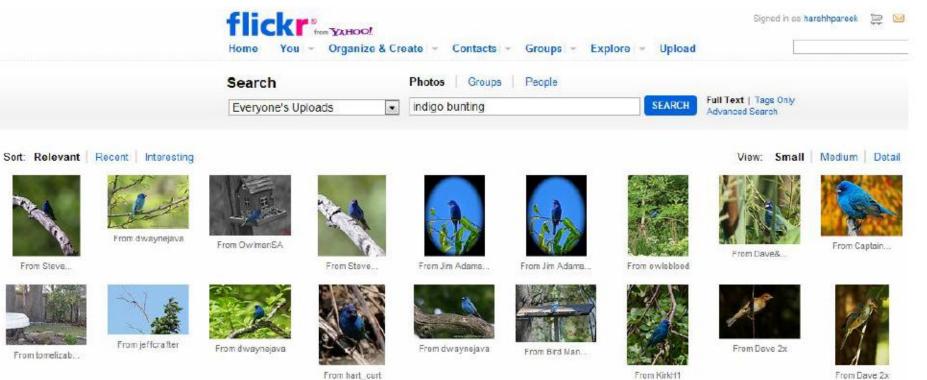


Human-in-the-loop Recognition



Outline

- Human Computation for Annotation
 - ESP Game
 - Mechanical Turk
- Human-in-the-loop Recognition
 - Visipedia



From Dave 2x

From Bird Man ...

From Birds&.

From Dave 2x

From Buzzie82

From Christian.

From tomelizab.

From Dan and.

From MomOnTheR.

From tanagergirl

From dmarshman

From kenh571

From DansPhotoArt

Image credit: Flickr.com

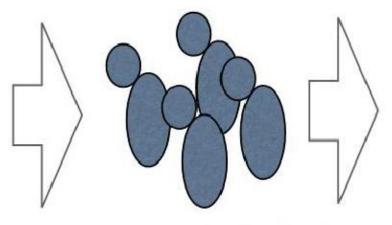
From KirkH1

Luis von Ahn and Laura Dabbish. <u>Labeling Images with a Computer Game</u>. ACM Conf. on Human Factors in Computing Systems, CHI 2004

6000 images from flickr.com

Building datasets

Annotators



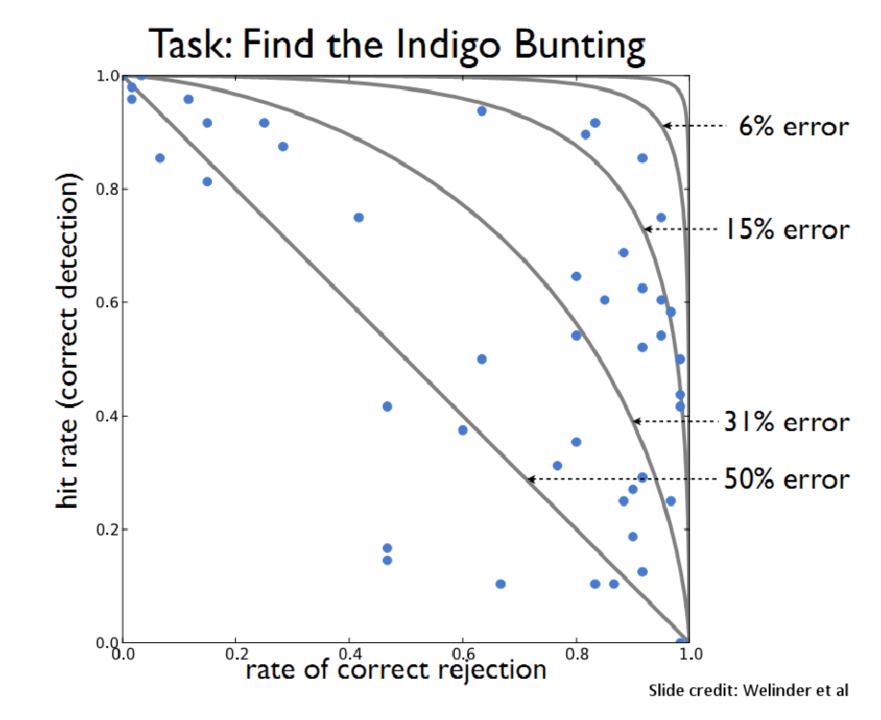
amazonmechanical turk Artificial Artificial Intelligence

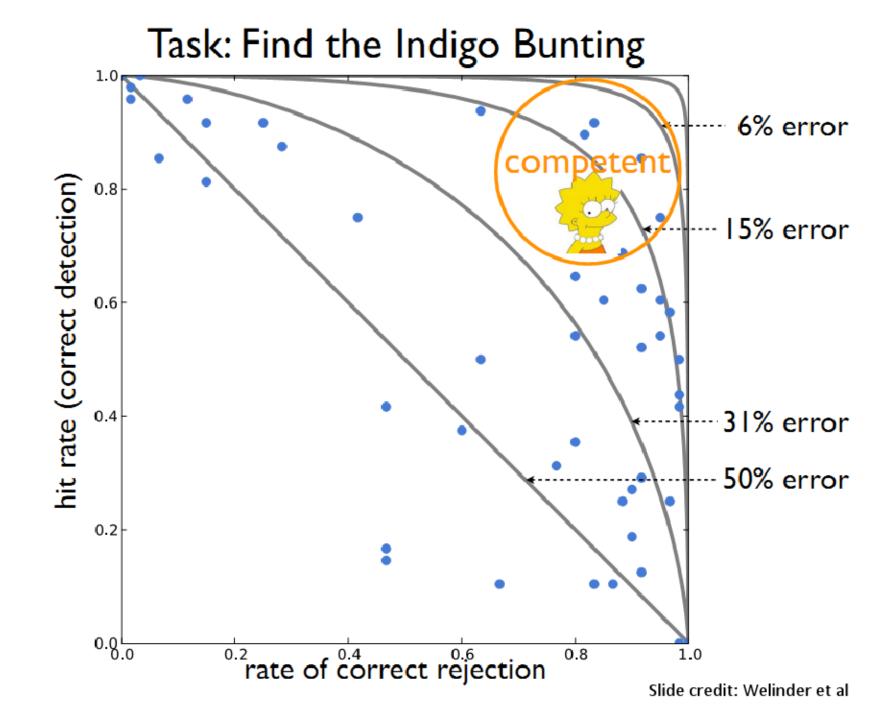
Is there an Indigo bunting in the image?

100s of training images

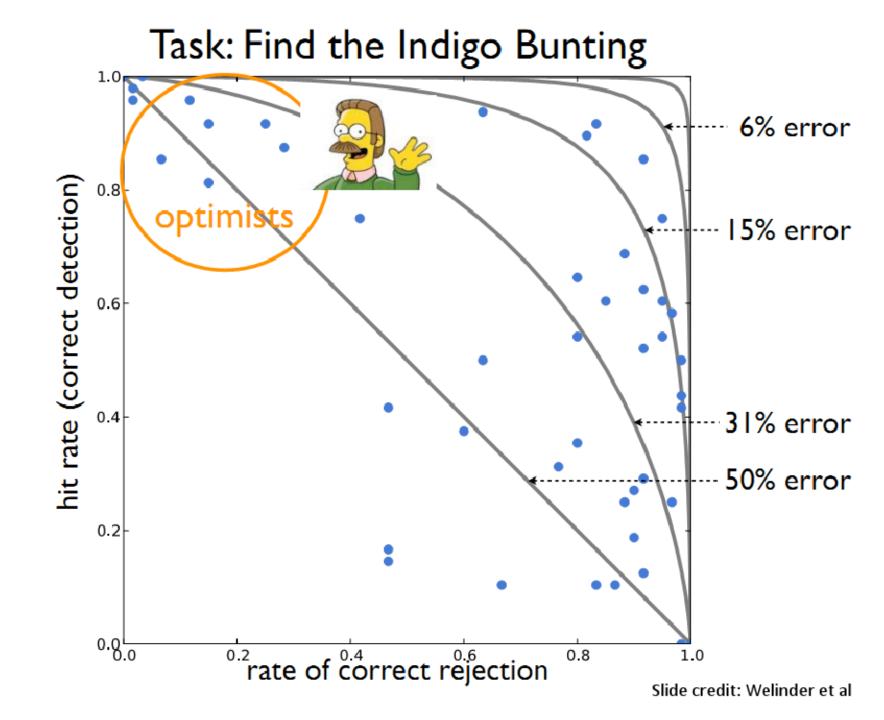
Slide credit: Welinder et al

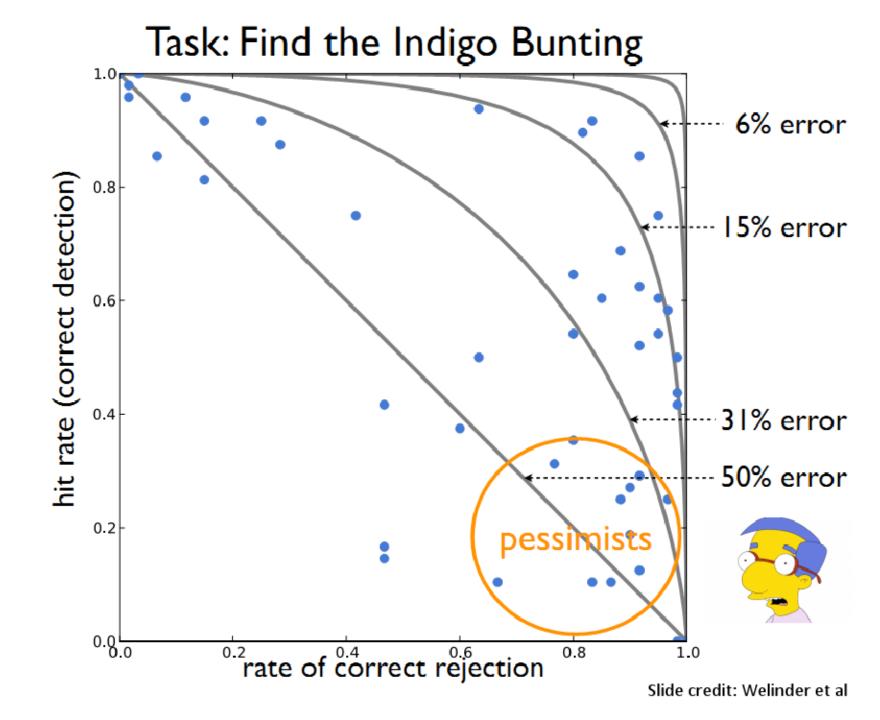
Slide credit: Welinder et al

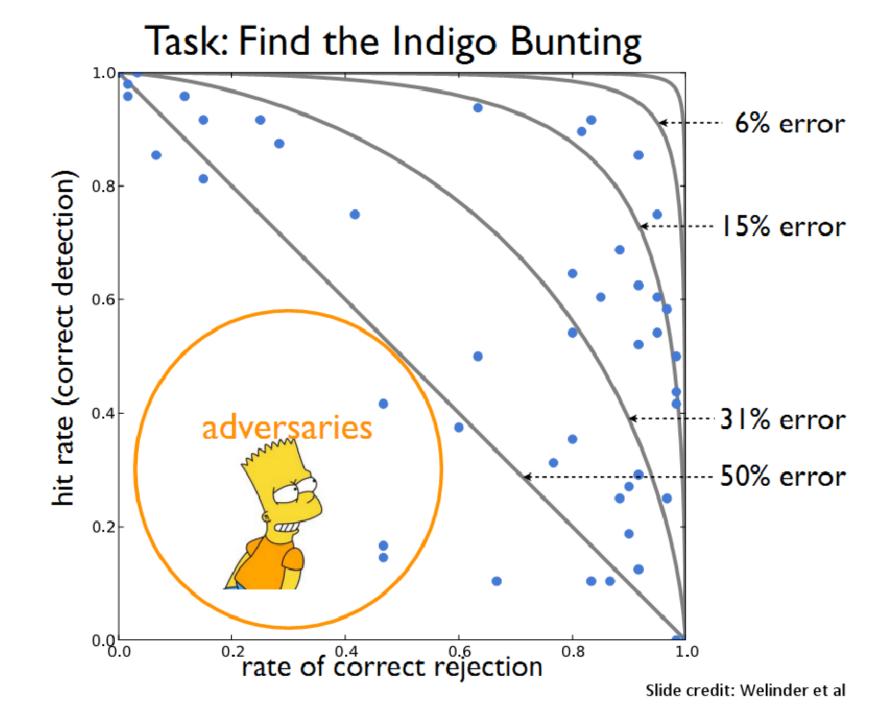












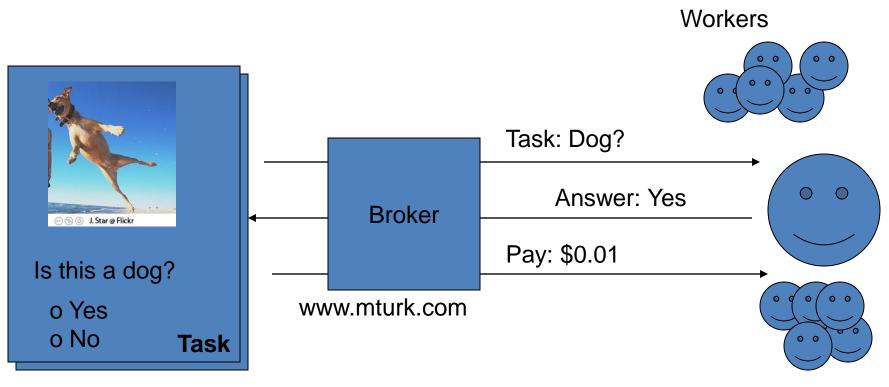
Utility data annotation via Amazon Mechanical Turk

$X 100\ 000 = 5000

Alexander Sorokin David Forsyth University of Illinois at Urbana-Champaign

Slides by Alexander Sorokin

Amazon Mechanical Turk



\$0.01

Annotation protocols

- Type keywords
- Select relevant images
- Click on landmarks
- Outline something
- Detect features

..... anything else

Type keywords

Mechanical Turk Project

If you're using the turk, Be sure to copy the text back into the HIT page so that you can be credited.

- Photo should be rotated 90 degrees left (counter-clockwise)
- Photo should be rotated 90 degrees right (clockwise)
- Photo should be turned upside down
- Photo is oriented properly

Please describe the picture in the box using 10 words or more: shells

Submit Turk Skip / Load a different photo

The submit button MUST be clicked!

Select examples

Joint work with Tamara and Alex Berg

http://visionpc.cs.uiuc.edu/~largescale/data/simpleevaluation/html/horse.html

Select examples



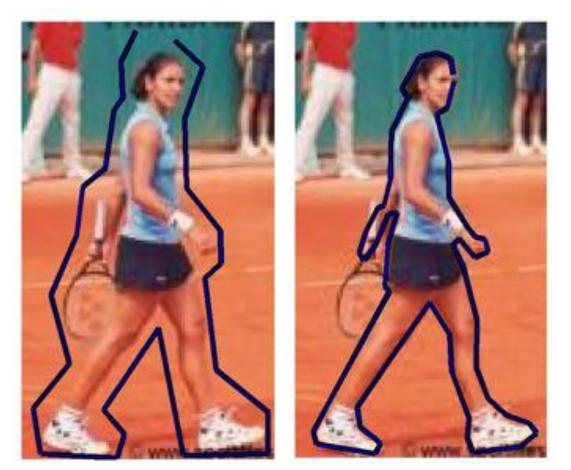
Click on landmarks



\$0.01

http://vision-app1.cs.uiuc.edu/mt/results/people14-batch11/p7/

Outline something



\$0.01

http://visionpc.cs.uiuc.edu/~largescale/results/production-3-2/results_page_013.html Data from Ramanan NIPS06

Motivation

$X 100\ 000 = 5000

Custom annotations

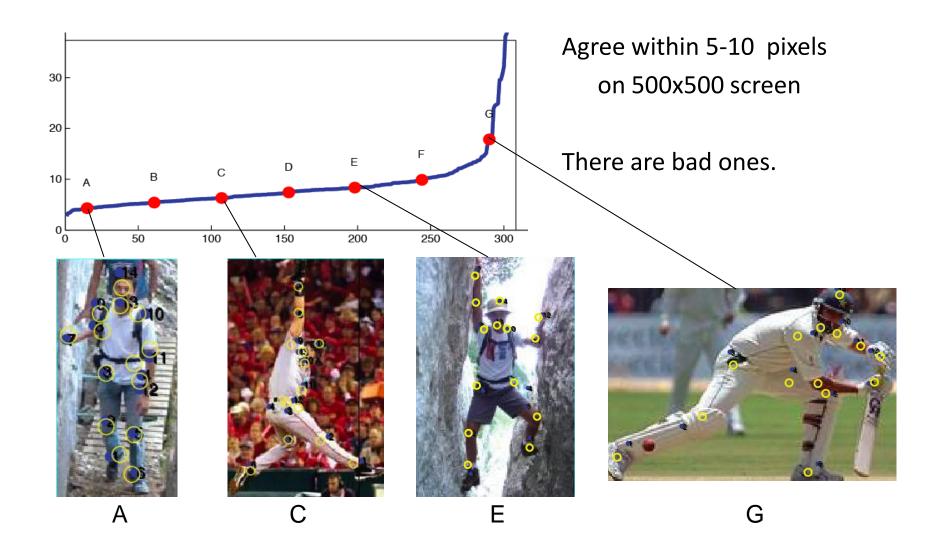
Large scale

Low price

Issues

- Quality?
 - How good is it?How to be sure?
- Price?
 - -How to price it?

Annotation quality

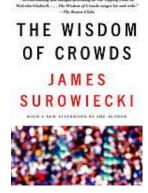


How do we get quality annotations?

Ensuring Annotation Quality

 Consensus / Multiple Annotation / "Wisdom of the Crowds"

- Gold Standard / Sentinel
 - Special case: qualification exam
- Grading Tasks
 - A second tier of workers who grade others



Pricing

- Trade off between throughput and cost
- Higher pay can actually attract scammers

Visual Recognition with Humans in the Loop

Steve Branson, Catherine Wah, Florian Schroff, Boris Babenko, Peter Welinder, Pietro Perona, Serge Belongie

Part of the Visipedia project

Slides from Brian O'Neil

Introduction:

(A) Easy for Humans

Chair? Airplane? ... Computers starting to get good at this.

(B) Hard for Humans

Finch? Bunting?... If it's hard for humans, it's probably too hard for computers.

(C) Easy for Humans

Yellow Belly? Blue Belly? ... Semantic feature extraction difficult for computers.

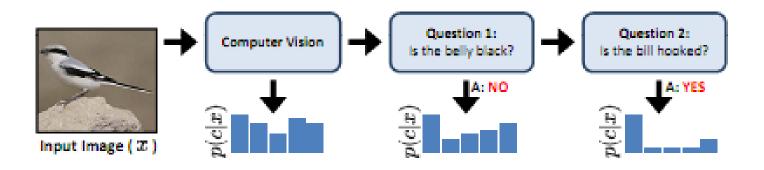
Combine strengths to solve this problem.

The Approach: What is progress?

- Supplement visual recognition with the human capacity for visual feature extraction to tackle difficult (fine-grained) recognition problems.
- Typical progress is viewed as increasing data difficulty while maintaining full autonomy
- Here, the authors view progress as reduction in human effort on difficult data.

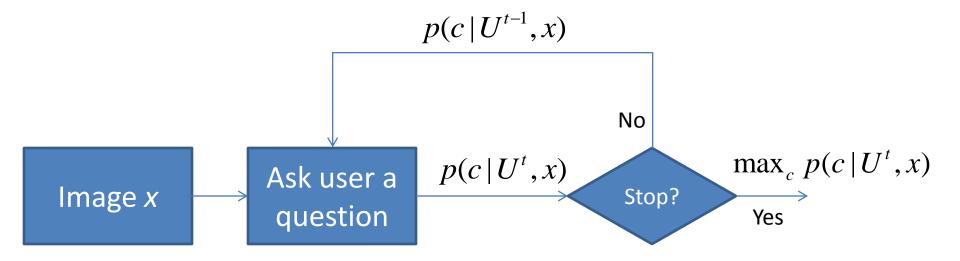
The Approach: 20 Questions

 Ask the user a series of discriminative visual questions to make the classification.



Which 20 questions?

• At each step, exploit the image itself and the user response history to select the most informative question to ask next.



Some definitions:

- $Q = \{q_1 ... q_n\}$ Set of possible questions
 - Possible answers to question i
 - Possible confidence in answer *i* (Guessing, Probably, Definitely)

$$u_i = (a_i, r_i)$$
 • User response

 $a_i \in A_i$

 $r_i \in V$

 II^t

• History of user responses at time t

Question selection

 Seek the question that gives the maximum information gain (entropy reduction) given the image and the set of previous user responses.

$$I \ c; u_i \mid x, U^{t-1} = \sum_{u_i \in A_i \times V} p \ u_i \mid x, U^{t-1} \qquad H \ c \mid x, u_i \cup U^{t-1} - H \ c \mid x, U^{t-1}$$

Probability of obtaining Response *u_i* given the image And response history Entropy when response is Added to history

Entropy before response is added.

where
$$H c | x, U^{t-1} = -\sum_{c=1}^{C} p c | x, U^{t-1} \log p c | x, U^{t-1}$$

Incorporating vision

- Bayes Rule
- A visual recognition algorithm outputs a probability distribution across all classes that is used as the prior.
- A posterior probability is then computed based on the probability of obtaining a particular response history given each class.

$$p \ c \mid x, U = \eta p \ U \mid c, x \ p \ c \mid x = \eta p \ U \mid c \ p \ c \mid x$$

Modeling user responses

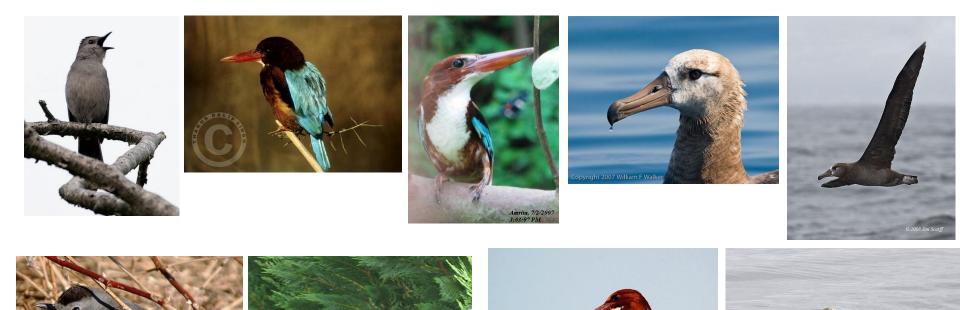
• Assume that the questions are answered independently.

$$p \quad U^{t-1} \mid c = \prod_{i}^{t-1} p \quad u_i \mid c \qquad \text{Required for posterior computation}$$

$$p \quad u_i \mid x, U^{t-1} = \sum_{c=1}^{C} p \quad u_i \mid c \quad p \quad c \mid x, U^{t-1} \qquad \text{Required for information gain computation}$$

The Dataset: Birds-200

• 6033 images of 200 species



William Mer Can

Implementation

- Assembled 25 visual questions encompassing 288 visual attributes extracted from <u>www.whatbird.com</u>
- Mechanical Turk users asked to answer questions and provide confidence scores.

User Responses.

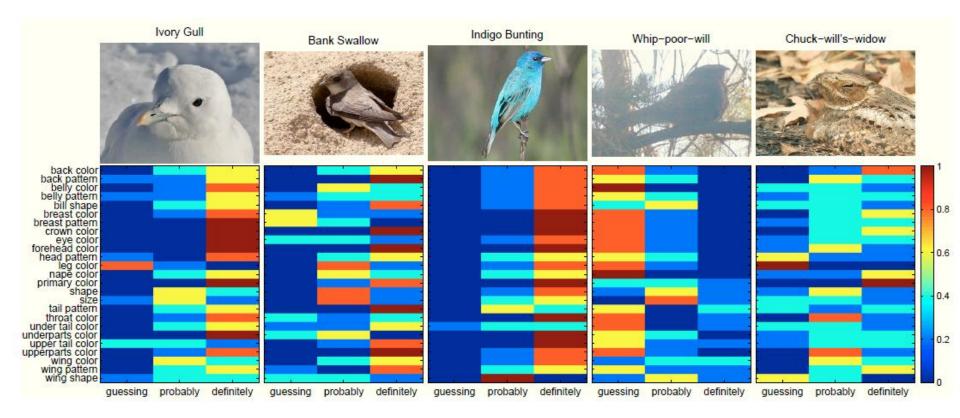
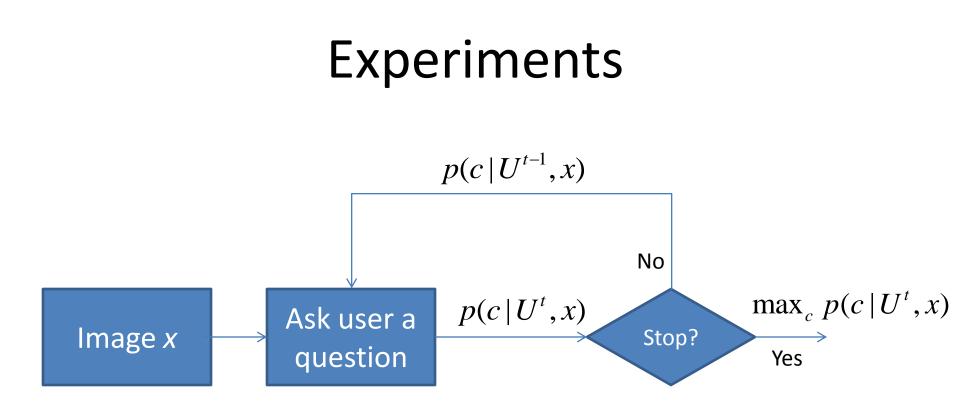


Fig. 4. Examples of user responses for each of the 25 attributes. The distribution over {*Guessing*, *Probably*, *Definitely*} is color coded with blue denoting 0% and red denoting 100% of the five answers per image attribute pair.

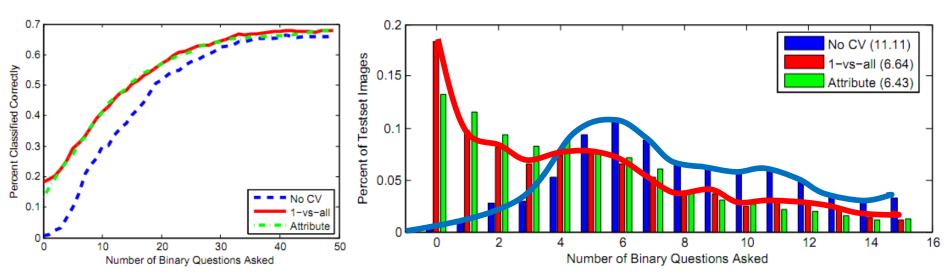
Visual recognition

- Any vision system that can output a probability distribution across classes will work.
- Authors used Andrea Vedaldis's code.
 Color/gray SIFT
 - VQ geometric blur
 - 1 v All SVM
- Authors added full image color histograms and VQ color histograms



- 2 Stop criteria:
 - Fixed number of questions evaluate accuacy
 - User stops when bird identified measure number of questions required.

Results



- Average number of questions to make ID reduced from 11.11 to 6.43
- Method allows CV to handle the easy cases, consulting with users only on the more difficult cases.

Key Observations

- Visual recognition reduces labor over a pure "20 Q" approach.
- Visual recognition improves performance over a pure "20 Q" approach. (69% vs 66%)
- User input dramatically improves recognition results. (66% vs 19%)

Strengths and weaknesses

- Handles very difficult data and yields excellent results.
- Plug-and-play with many recognition algorithms.
- Requires significant user assistance
- Reported results assume humans are perfect verifiers
- Is the reduction from 11 questions to 6 really that significant?