Previous Lecture

- Action recognition in videos and images

Next Lecture

- Guest talk by Pedro Felzenszwalb on Object Detection
Opportunities of Scale

Computer Vision

James Hays, Brown

Many slides from James Hays, Alyosha Efros, and Derek Hoiem

Graphic from Antonio Torralba
Today’s class

• Opportunities of Scale: Data-driven methods
 – Scene completion
 – Im2gps
 – Recognition via Tiny Images
 – More recognition by association
Google and massive data-driven algorithms

A.I. for the postmodern world:

– all questions have already been answered...many times, in many ways
– Google is dumb, the “intelligence” is in the data
My dog once ate three oranges, but then it died.

Mi perro se comió una vez tres naranjas, pero luego murió.

If a machine can convincingly simulate an intelligent conversation, does it necessarily understand? In the experiment, Searle imagines himself in a room, acting as a computer by manually executing a program that convincingly simulates the behavior of a native Chinese speaker.

Most of the discussion consists of attempts to refute it. "The overwhelming majority," notes BBS editor Stevan Harnad, "still think that the Chinese Room Argument is dead wrong." The sheer volume of the literature that has grown up around it inspired Pat Hayes to quip that the field of cognitive science ought to be redefined as "the ongoing research program of showing Searle's Chinese Room Argument to be false."
Big Idea

• What if invariance / generalization isn’t actually the core difficulty of computer vision?
• What if we can perform high level reasoning with brute-force, data-driven algorithms?
Image Completion Example

[Hays and Efros. Scene Completion Using Millions of Photographs. SIGGRAPH 2007 and CACM October 2008.]

http://graphics.cs.cmu.edu/projects/scene-completion/
What should the missing region contain?
Which is the original?

(a)

(b)

(c)
How it works

• Find a similar image from a large dataset
• Blend a region from that image into the hole
Trick: If you have enough images, the dataset will contain very similar images that you can find with simple matching methods.
How many images is enough?
Nearest neighbors from a collection of 20 thousand images
Nearest neighbors from a collection of 2 million images
Image Data on the Internet

• Flickr (as of Sept. 19th, 2010)
 – 5 billion photographs
 – 100+ million geotagged images

• Imageshack (as of 2009)
 – 20 billion

• Facebook (as of 2009)
 – 15 billion

Image completion: how it works

[Hays and Efros. Scene Completion Using Millions of Photographs. SIGGRAPH 2007 and CACM October 2008.]
The Algorithm
Scene Matching
Scene Descriptor
Scene Descriptor

Scene Gist Descriptor
(Oliva and Torralba 2001)
Scene Descriptor

Scene Gist Descriptor
(Oliva and Torralba 2001)
2 Million Flickr Images
Context Matching
Graph cut + Poisson blending
Result Ranking

We assign each of the 200 results a score which is the sum of:

- The scene matching distance
- The context matching distance (color + texture)
- The graph cut cost
... 200 scene matches
Which is the original?
im2gps (Hays & Efros, CVPR 2008)

6 million geo-tagged Flickr images

http://graphics.cs.cmu.edu/projects/im2gps/
How much can an image tell about its geographic location?
lm2gps
Example Scene Matches
Voting Scheme
Effect of Dataset Size

![Graph showing the effect of dataset size on geolocation matching. The graph plots the percentage of geolocations within 200km against the database size. The green line represents the first nearest neighbor scene match, while the red line represents the chance with random scenes. The database size is shown on a log scale.]
Population density ranking

High Predicted Density

Low Predicted Density
Where is This?

Where is This?
Where are These?

15:14,
June 18th, 2006

16:31,
June 18th, 2006
Where are These?

15:14,
June 18th, 2006

16:31,
June 18th, 2006

17:24,
June 19th, 2006
Results

• im2gps – 10% (geo-loc within 400 km)
• temporal im2gps – 56%
Tiny Images

80 million tiny images: a large dataset for non-parametric object and scene recognition

http://groups.csail.mit.edu/vision/TinyImages/
c) Segmentation of 32x32 images
Human Scene Recognition

![Graph showing correct recognition rate vs. image resolution for color and grayscale images.]

- **Correct recognition rate** vs. **Image resolution**
 - **Color image**
 - **Grayscale**

a) Scene recognition

- **True positive rate**
Humans vs. Computers: Car-Image Classification

Humans for 32 pixel tall images

Various computer vision algorithms for full resolution images
Powers of 10

Number of images on my hard drive: \(10^4\)

Number of images seen during my first 10 years: \(10^8\)
(3 images/second \(\times\) 60 \(\times\) 60 \(\times\) 16 \(\times\) 365 \(\times\) 10 = 630720000)

Number of images seen by all humanity: \(10^{20}\)
106,456,367,669 humans \(\times\) 60 years \(\times\) 3 images/second \(\times\) 60 \(\times\) 60 \(\times\) 16 \(\times\) 365 = 1 from http://www.prb.org/Articles/2002/HowManyPeopleHaveEverLivedonEarth.aspx

Number of photons in the universe: \(10^{88}\)

Number of all 32x32 images: \(10^{7373}\)
256 \(32^3\) \(=\) \(10^{7373}\)
Scenes are unique
But not all scenes are so original
Lots Of Images

7,900
Lots
Of
Images
Lots
Of
Images
Application: Automatic Colorization

Input

Color Transfer

Color Transfer

Matches (gray)

Matches (w/ color)

Avg Color of Match
Application: Automatic Colorization

Input

Color Transfer

Color Transfer

Matches (gray)

Matches (w/ color)

Avg Color of Match
Application: Person Detection

80 million “tiny images” downloaded by keyword search.

80 nearest neighbors vote for image category.
Re-ranking Altavista search for “person”

a) Altavista ranking

b) Sorted by the tiny images
Rather than categorizing objects, associate them with stored examples of objects and transfer the associated labels.

Malisiewicz and Efros (CVPR 2008)
Training procedure

• Learn a region similarity measure from hand-segmented objects in LabelMe

• Similarity features
 – Shape: region mask, pixel area, bounding box size
 – Texture: normalized texton histogram
 – Color: mean RGB, std RGB, color histogram
 – Position: coarse 8x8 image mask, coords of top/bottom pixels
Training procedure

- Learn a distance/similarity measure for each region
 - Minimize distance to K most similar examples from the same category
 - Maximize distance to examples from other categories

\[
\{w^*, \alpha^*\} = \underset{w, \alpha}{\arg \min} \ f(w, \alpha)
\]

\[
f(w, \alpha) = \sum_{i \in C} \alpha_i L(-w \cdot d_i) + \sum_{i \notin C} L(w \cdot d_i)
\]

- Set to 1 for K nearest examples
- Hinge Loss

\[
w \geq 0, \ \alpha_j \in \{0, 1\}, \ \sum_j \alpha_j = K
\]
Learned Similarity Measure

Learned Distance

Texton Distance

Learned Distance Functions for Segment Labeling

Precision

Recall

Learned Distance Functions

D<1 threshold point

Texton Histogram
Learned Similarity Measure
Testing procedure

- Create multiple segmentations (MeanShift + Ncuts)
- Find similar object regions in training set; each votes for the object label
- What about bad segments?
 - Most of the time, they don’t match any objects in the training set
 - Consider only associations with distance < 1
Automatic Parses
Summary

- With billions of images on the web, it’s often possible to find a close nearest neighbor.

- In such cases, we can shortcut hard problems by “looking up” the answer, stealing the labels from our nearest neighbor.

- For example, simple (or learned) associations can be used to synthesize background regions, colorize, or recognize objects.