Project 4 Results

• Representation
 – SIFT and HoG are popular and successful.

• Data
 – Hugely varying results from hard mining.

• Learning
 – Non-linear classifier usually better.

Zachary, Hung-I, Paul, Emanuel
Project 5

- [Project 5 handout]
Final Project

• Proposals due Friday.
 – One paragraph with one paper link.
• Can opt out of project 5.
• Higher expectations; must be able to present during final exam slot.
Stereo: Epipolar geometry

11/14/2011
CS143, Brown
James Hays

Slides by Kristen Grauman
Multiple views

Multi-view geometry, matching, invariant features, stereo vision

Hartley and Zisserman

Lowe
Why multiple views?

- Structure and depth are inherently ambiguous from single views.
Why multiple views?

- Structure and depth are inherently ambiguous from single views.
• What cues help us to perceive 3d shape and depth?
Shading

[Figure from Prados & Faugeras 2006]
Focus/defocus

Images from same point of view, different camera parameters

3d shape / depth estimates

[figs from H. Jin and P. Favaro, 2002]
Texture

Perspective effects
Motion

Figures from L. Zhang

http://www.brainconnection.com/teasers/?main=illusion/motion-shape
Estimating scene shape

• “Shape from X”: Shading, Texture, Focus, Motion…

• Stereo:
 – shape from “motion” between two views
 – infer 3d shape of scene from two (multiple) images from different viewpoints

Main idea:
Outline

• Human stereopsis
• Stereograms
• Epipolar geometry and the epipolar constraint
 – Case example with parallel optical axes
 – General case with calibrated cameras
Human eye

Rough analogy with human visual system:

Pupil/Iris – control amount of light passing through lens
Retina - contains sensor cells, where image is formed
Fovea – highest concentration of cones

Fig from Shapiro and Stockman
Human stereopsis: disparity

From Bruce and Green, Visual Perception, Physiology, Psychology and Ecology

Human eyes fixate on point in space – rotate so that corresponding images form in centers of fovea.
Human stereopsis: disparity

Disparity occurs when eyes fixate on one object; others appear at different visual angles.

From Bruce and Green, Visual Perception, Physiology, Psychology and Ecology

Adapted from David Forsyth, UC Berkeley
Disparity: \(d = r-l = D-F \).
Random dot stereograms

• Julesz 1960: Do we identify local brightness patterns before fusion (monocular process) or after (binocular)?

• To test: pair of synthetic images obtained by randomly spraying black dots on white objects
Random dot stereograms
Random dot stereograms
Random dot stereograms

• When viewed monocularly, they appear random; when viewed stereoscopically, see 3d structure.

• Conclusion: human binocular fusion not directly associated with the physical retinas; must involve the central nervous system

• Imaginary “cyclopean retina” that combines the left and right image stimuli as a single unit
Stereo photography and stereo viewers

Take two pictures of the same subject from two slightly different viewpoints and display so that each eye sees only one of the images.

Invented by Sir Charles Wheatstone, 1838

Image from fisher-price.com
Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923
http://www.well.com/~jimg/stereo/stereo_list.html
Autostereograms

Exploit disparity as depth cue using single image.

(Single image random dot stereogram, Single image stereogram)
Autostereograms

Images from magiceye.com
Estimating depth with stereo

- **Stereo**: shape from “motion” between two views
- We’ll need to consider:
 - Info on camera pose ("calibration")
 - Image point correspondences
Stereo vision

Two cameras, simultaneous views

Single moving camera and static scene
Camera parameters

Extrinsic parameters:
Camera frame 1 ↔ Camera frame 2

Intrinsic parameters:
Image coordinates relative to camera ↔ Pixel coordinates

- **Extrinsic** params: rotation matrix and translation vector
- **Intrinsic** params: focal length, pixel sizes (mm), image center point, radial distortion parameters

We’ll assume for now that these parameters are given and fixed.
Outline

• Human stereopsis
• Stereograms

• Epipolar geometry and the epipolar constraint
 – Case example with parallel optical axes
 – General case with calibrated cameras
Geometry for a simple stereo system

• First, assuming parallel optical axes, known camera parameters (i.e., calibrated cameras):
Focal length

World point

Depth of \(p \)

image point (left)

image point (right)

optical center (left)

optical center (right)

baseline \(T \)
Geometry for a simple stereo system

- Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). **What is expression for Z?**

Similar triangles \((p_l, P, p_r)\) and \((O_l, P, O_r)\):

\[
\frac{T + x_l - x_r}{Z - f} = \frac{T}{Z}
\]

\[
Z = f \frac{T}{x_r - x_l}
\]

disparity
Depth from disparity

So if we could find the **corresponding points** in two images, we could **estimate relative depth**…
Summary

• Depth from stereo: main idea is to triangulate from corresponding image points.

• Epipolar geometry defined by two cameras
 – We’ve assumed known extrinsic parameters relating their poses

• Epipolar constraint limits where points from one view will be imaged in the other
 – Makes search for correspondences quicker

• **Terms**: epipole, epipolar plane / lines, disparity, rectification, intrinsic/extrinsic parameters, essential matrix, baseline
Coming up

– Computing correspondences
– Non-geometric stereo constraints