Project 2 Results

Results

Common Problems
Interest Points: Corners

Computer Vision

CS 143, Brown

James Hays

Slides from Rick Szeliski, Svetlana Lazebnik, and Kristin Grauman
Feature extraction: Corners

9300 Harris Corners Pkwy, Charlotte, NC

Slides from Rick Szeliski, Svetlana Lazebnik, and Kristin Grauman
Why extract features?

- Motivation: panorama stitching
 - We have two images – how do we combine them?
Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views
Characteristics of good features

• **Repeatability**
 • The same feature can be found in several images despite geometric and photometric transformations

• **Saliency**
 • Each feature is distinctive

• **Compactness and efficiency**
 • Many fewer features than image pixels

• **Locality**
 • A feature occupies a relatively small area of the image; robust to clutter and occlusion
Goal: interest operator repeatability

• We want to detect (at least some of) the same points in both images.

No chance to find true matches!

• Yet we have to be able to run the detection procedure *independently* per image.
Goal: descriptor distinctiveness

- We want to be able to reliably determine which point goes with which.

- Must provide some invariance to geometric and photometric differences between the two views.
Applications

Feature points are used for:

- Image alignment
- 3D reconstruction
- Motion tracking
- Robot navigation
- Indexing and database retrieval
- Object recognition
Local features: main components

1) **Detection**: Identify the interest points

2) **Description**: Extract vector feature descriptor surrounding each interest point.

3) **Matching**: Determine correspondence between descriptors in two views
Many Existing Detectors Available

Hessian & Harris
Laplacian, DoG
Harris-/Hessian-Laplace
Harris-/Hessian-Affine
EBR and IBR
MSER
Salient Regions
Others...

[Beaudet ‘78], [Harris ‘88]
[Lindeberg ‘98], [Lowe 1999]
[Mikolajczyk & Schmid ‘01]
[Mikolajczyk & Schmid ‘04]
[Tuytelaars & Van Gool ‘04]
[Matas ‘02]
[Kadir & Brady ‘01]
• What points would you choose?
Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window.
- Shifting a window in *any direction* should give a *large change* in intensity.

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions

Source: A. Efros
Corner Detection: Mathematics

Change in appearance of window $w(x,y)$ for the shift $[u,v]$:

$$E(u, v) = \sum_{x, y} w(x, y) \left(I(x + u, y + v) - I(x, y) \right)^2$$
Corner Detection: Mathematics

Change in appearance of window \(w(x,y) \) for the shift \([u,v]\):

\[
E(u, v) = \sum_{x,y} w(x, y) \ I(x + u, y + v) - I(x, y)^2
\]
Corner Detection: Mathematics

Change in appearance of window $w(x,y)$ for the shift $[u,v]$:

$$E(u, v) = \sum_{x, y} w(x, y) \left(I(x + u, y + v) - I(x, y) \right)^2$$

Window function

Shifted intensity

Intensity

Window function $w(x, y) =$

1 in window, 0 outside

Gaussian

Source: R. Szeliski
Corner Detection: Mathematics

Change in appearance of window $w(x,y)$ for the shift $[u,v]$:

$$E(u,v) = \sum_{x,y} w(x,y) \left(I(x+u, y+v) - I(x, y) \right)^2$$

We want to find out how this function behaves for small shifts.

$$E(u, v)$$
Change in appearance of window \(w(x,y) \) for the shift \([u,v]\):

\[
E(u, v) = \sum_{x,y} w(x, y) \left(I(x + u, y + v) - I(x, y) \right)^2
\]

We want to find out how this function behaves for small shifts.

Local quadratic approximation of \(E(u,v) \) in the neighborhood of \((0,0)\) is given by the second-order Taylor expansion:

\[
E(u, v) \approx E(0,0) + [u \ v] \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} [u \ v] \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} [u \ v]
\]
Corner Detection: Mathematics

\[E(u, v) = \sum_{x, y} w(x, y) \ I(x + u, y + v) - I(x, y)^2 \]

Second-order Taylor expansion of \(E(u,v) \) about \((0,0)\):

\[
E(u, v) \approx E(0,0) + [u \ v] \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} [u \ v] \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} [u \ v]
\]

\[
E_u(u, v) = \sum_{x, y} 2w(x, y) I_x(x + u, y + v) - I(x, y) \ I_x(x + u, y + v)
\]

\[
E_{uu}(u, v) = \sum_{x, y} 2w(x, y) I_x(x + u, y + v) I_x(x + u, y + v)
\]

\[
E_{xx}(u, v) = \sum_{x, y} 2w(x, y) I_{xx}(x + u, y + v) - I(x, y) \ I_{xx}(x + u, y + v)
\]

\[
E_{uv}(u, v) = \sum_{x, y} 2w(x, y) I_y(x + u, y + v) I_x(x + u, y + v)
\]

\[
E_{xy}(u, v) = \sum_{x, y} 2w(x, y) I_{xy}(x + u, y + v) - I(x, y) \ I_{xy}(x + u, y + v)
\]
Corner Detection: Mathematics

\[E(u, v) = \sum_{x, y} w(x, y) \left(I(x+u, y+v) - I(x, y) \right)^2 \]

Second-order Taylor expansion of \(E(u,v) \) about \((0,0)\):

\[
E(u, v) \approx E(0,0) + [u \ v] \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} [u \ v] \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}
\]

\[
E(0,0) = 0
\]
\[
E_u(0,0) = 0
\]
\[
E_v(0,0) = 0
\]

\[
E_{uu}(0,0) = \sum_{x, y} 2w(x, y)I_x(x, y)I_x(x, y)
\]

\[
E_{vv}(0,0) = \sum_{x, y} 2w(x, y)I_y(x, y)I_y(x, y)
\]

\[
E_{uv}(0,0) = \sum_{x, y} 2w(x, y)I_x(x, y)I_y(x, y)
\]
Corner Detection: Mathematics

\[E(u, v) = \sum_{x, y} w(x, y) \ I(x + u, y + v) - I(x, y)^2 \]

Second-order Taylor expansion of \(E(u,v) \) about \((0,0)\):

\[E(u,v) \approx [u \ v] \begin{bmatrix} \sum_{x,y} w(x, y)I_x^2(x, y) & \sum_{x,y} w(x, y)I_x(x, y)I_y(x, y) \\ \sum_{x,y} w(x, y)I_x(x, y)I_y(x, y) & \sum_{x,y} w(x, y)I_y^2(x, y) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \]

- \(E(0,0) = 0 \)
- \(E_u(0,0) = 0 \)
- \(E_v(0,0) = 0 \)

- \(E_{uu}(0,0) = \sum_{x,y} 2w(x, y)I_x(x, y)I_x(x, y) \)

- \(E_{vv}(0,0) = \sum_{x,y} 2w(x, y)I_y(x, y)I_y(x, y) \)

- \(E_{uv}(0,0) = \sum_{x,y} 2w(x, y)I_x(x, y)I_y(x, y) \)
Corner Detection: Mathematics

The quadratic approximation simplifies to

\[E(u, v) \approx [u \ v] \ M [u \ v] \]

where \(M \) is a *second moment matrix* computed from image derivatives:

\[M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \]

\[M = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x \ I_y] = \sum \nabla I (\nabla I)^T \]
Corners as distinctive interest points

\[
M = \sum w(x, y) \begin{bmatrix} I_x & I_x \\ I_y & I_y \end{bmatrix}
\]

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).

Notation:

\[
I_x \leftrightarrow \frac{\partial I}{\partial x} \quad I_y \leftrightarrow \frac{\partial I}{\partial y} \quad I_x I_y \leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y}
\]
Interpreting the second moment matrix

The surface $E(u, v)$ is locally approximated by a quadratic form. Let’s try to understand its shape.

$$E(u, v) \approx [u \ v] \ M \ [u \ v]$$

$$M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
Interpreting the second moment matrix

First, consider the axis-aligned case (gradients are either horizontal or vertical)

\[
M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
\]

If either \(\lambda \) is close to 0, then this is not a corner, so look for locations where both are large.
Interpreting the second moment matrix

Consider a horizontal “slice” of $E(u, v)$:

$$[u \ v] \ M \ \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

This is the equation of an ellipse.
Interpreting the second moment matrix

Consider a horizontal “slice” of $E(u, v)$:

$$[u \ v] \ M \ \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

This is the equation of an ellipse.

Diagonalization of M:

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R.

The direction of the slowest change is given by $\lambda_{\text{min}}^{-1/2}$, and the direction of the fastest change is given by $\lambda_{\text{max}}^{-1/2}$.
Visualization of second moment matrices
Visualization of second moment matrices
Interpreting the eigenvalues

Classification of image points using eigenvalues of M:

- λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; E increases in all directions ("Corner")
- λ_1 and λ_2 are small; E is almost constant in all directions ("Flat" region)
- $\lambda_1 \gg \lambda_2$ ("Edge")
- $\lambda_2 \gg \lambda_1$ ("Edge")
Corner response function

\[R = \det(M) - \alpha \text{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha(\lambda_1 + \lambda_2)^2 \]

\(\alpha \): constant (0.04 to 0.06)
Harris corner detector

1) Compute M matrix for each image window to get their *cornerness* scores.
2) Find points whose surrounding window gave large corner response ($f >$ threshold)
3) Take the points of local maxima, i.e., perform non-maximum suppression

Harris Detector: Steps
Harris Detector: Steps

Compute corner response R
Harris Detector: Steps

Find points with large corner response: $R > \text{threshold}$
Harris Detector: Steps

Take only the points of local maxima of R
Harris Detector: Steps
Invariance and covariance

- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - **Invariance**: image is transformed and corner locations do not change
 - **Covariance**: if we have two transformed versions of the same image, features should be detected in corresponding locations
Affine intensity change

- Only derivatives are used \Rightarrow invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow aI$

Partially invariant to affine intensity change
• Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation
Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation
Scaling

Corner

All points will be classified as edges

Corner location is not covariant to scaling!