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Finding Boundaries

Computer Vision
CS 143, Brown
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Edge detection

e Goal: Identify sudden
changes (discontinuities) in
an image rac
— Intuitively, most semantic and | ?

shape information from the
image can be encoded in the

edges
— More compact than pixels

e |deal: artist’s line drawing
(but artist is also using
object-level knowledge)

Source: D. Lowe



Why do we care about edges?

e Extract information,
recognize objects
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Origin of Edges

surface normal discontinuity

. < depth discontinuity
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* Edges are caused by a variety of factors

Source: Steve Seitz



Closeup of edges
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Closeup of edges
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Closeup of edges
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Closeup of edges

Source: D. Hoiem



Characterizing edges

e An edge is a place of rapid change in the
image intensity function

image

intensity function
(along horizontal scanline)

first derivative

\

edges correspond to
extrema of derivative
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With a little Gaussian noise
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Effects of noise

* Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal
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Where is the edge?

Source: S. Seitz



Effects of noise

e Difference filters respond strongly to noise

— Image noise results in pixels that look very
different from their neighbors

— Generally, the larger the noise the stronger the
response

e \What can we do about it?

Source: D. Forsyth



Solution: smooth first

Sigma = 50
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To find edges, look for peaks In

Source: S. Seitz



Derivative theorem of convolution

e Differentiation is convolution, anddconvolution iS
associative: —(f*g)=f*x—0qg

dx dx

e This saves us one operation:

Sigma = 50
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Derivative of Gaussian filter
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Tradeoff between smoothing and localization

1 pixel 3 pixels 7 pixels

* Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

Source: D. Forsyth



Designing an edge detector

e Criteria for a good edge detector:

— Good detection: the optimal detector should find all
real edges, ignoring noise or other artifacts

— Good localization

* the edges detected must be as close as possible to
the true edges

* the detector must return one point only for each
true edge point
* Cues of edge detection

— Differences in color, intensity, or texture across the
boundary

— Continuity and closure
— High-level knowledge

Source: L. Fei-Fei



Canny edge detector

e This is probably the most widely used edge
detector in computer vision

e Theoretical model: step-edges corrupted by
additive Gaussian noise

e Canny has shown that the first derivative of
the Gaussian closely approximates the
operator that optimizes the product of
signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE
Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei


http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Example

original image (Lena)



Derivative of Gaussian filter
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Compute Gradients (DoG)

)
A “\

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude



Get Orientation at Each Pixel

e Threshold at minimum level

e Get orientation

theta = atan2(gy, gx)




Non-maximum suppression for each

orientation
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Source: D. Forsyth

At g, we have a
maximum if the
value is larger than
those at both p and
at r. Interpolate to
get these values.




Before Non-max Suppression




After non-max suppression




Hysteresis thresholding

* Threshold at low/high levels to get weak/strong edge pixels

Do connected components, starting from strong edge pixels
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Hysteresis thresholding

* Check that maximum value of gradient
value is sufficiently large

— drop-outs? use hysteresis

* use a high threshold to start edge curves and a low
threshold to continue them.

Source: S. Seitz



Final Canny Edges




Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
— Thin multi-pixel wide “ridges” down to single pixel width

4. Thresholding and linking (hysteresis):
— Define two thresholds: low and high

— Use the high threshold to start edge curves and the low
threshold to continue them

* MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-Fei



Effect of o (Gaussian kernel spread/size)

original Canny with 0 = 1 Canny with 0 = 2

The choice of ¢ depends on desired behavior

 large o detects large scale edges
« small o detects fine features

Source: S. Seitz



Learning to detect boundaries

image human segmentation gradient magnitude

* Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/



http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Representing Texture

Source: Forsyth



exture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture database/samples/



exture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture database/samples/



Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture database/samples/



What is texture?

Regular or stochastic patterns caused by
bumps, grooves, and/or markings



How can we represent texture?

 Compute responses of blobs and edges at
various orientations and scales



Overcomplete representation: filter banks

LM Filter Bank
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Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.ntml



Filter banks

* Process image with each filter and keep
responses (or squared/abs responses)




How can we represent texture?

 Measure responses of blobs and edges at
various orientations and scales

* |dea 1: Record simple statistics (e.g., mean,
std.) of absolute filter responses



Can you match the texture to the
response’?

Filters

Mean abs responses



Representing texture

* |dea 2: take vectors of filter responses at each pixel and
cluster them, then take histograms.




Building Visual Dictionaries

1. Sample patches from
a database

— E.g., 128 dimensional
SIFT vectors

2. Cluster the patches

— Cluster centers are
the dictionary

3. Assign a codeword
(number) to each
new patch, according
to the nearest cluster




pB boundary detector

Texture Brightness

Martin, Fowlkes, Malik 2004: Learning to Detect
Natural Boundaries...
http://www.eecs.berkeley.edu/Research/Projects/C
S/vision/grouping/papers/mfm-pami-boundary.pdf

Figure from Fowlkes


http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
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pB Boundary Detector

¢ EENE
eEERE
%mmum

Boundaries

%WMM.
:

a1 11
: — 4 q

—— Non-Boundaries —

Figure from Fowlkes



Brightness

Color

Texture

Combined

Human

TG

BG+CG+TG

Human
™ T

08

1086




Global pB boundary detector

Extract Pb
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Figure from Fowlkes



45 years of boundary detection
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Questions



