Welcome to CS142!

This course explores the theory and practice of statistical machine learning, focusing on computational methods for supervised and unsupervised data analysis. Specific topics include Bayesian and maximum likelihood parameter estimation, regularization and sparsity-promoting priors, kernel methods, the expectation maximization algorithm, and models for data with temporal or hierarchical structure. Applications to regression, categorization, clustering, and dimensionality reduction problems are illustrated by examples from vision, language, bioinformatics, and information retrieval.