Knowledge Representation and Reasoning (Logic)

George Konidaris
gdk@cs.brown.edu
Knowledge
Representation and Reasoning

Represent knowledge about the world.
- Representation language.
- Knowledge base.
- Declarative - *facts* and *rules*.

Reason using that represented knowledge.
- Often *asking questions*.
- Inference procedure.
- Heavily dependent on *representation language*.
Propositional Logic

Representation language and set of inference rules for reasoning about facts that are either **true** *or* **false**.

"that which is capable of being denied or affirmed as it is in itself"

Chrysippus of Soli, 3rd century BC
Knowledge Base

A list of propositional logic sentences that apply to the world.

For example:

\[
\begin{align*}
\text{Cold} \\
\lnot \text{Raining} \\
(\text{Raining} \lor \text{Cloudy}) \\
\text{Cold} \iff \lnot \text{Hot}
\end{align*}
\]

A knowledge base describes a set of worlds in which these facts and rules are true.
A model is a formalization of a “world”:
• Set the value of every variable in the KB to True or False.
• 2^n models possible for n propositions.

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold</td>
<td>False</td>
</tr>
<tr>
<td>Raining</td>
<td>False</td>
</tr>
<tr>
<td>Cloudy</td>
<td>False</td>
</tr>
<tr>
<td>Hot</td>
<td>False</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold</td>
<td>True</td>
</tr>
<tr>
<td>Raining</td>
<td>False</td>
</tr>
<tr>
<td>Cloudy</td>
<td>False</td>
</tr>
<tr>
<td>Hot</td>
<td>False</td>
</tr>
</tbody>
</table>

...
Models and Sentences

Each sentence has a *truth value* in each model.

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold</td>
<td>True</td>
</tr>
<tr>
<td>Raining</td>
<td>False</td>
</tr>
<tr>
<td>Cloudy</td>
<td>True</td>
</tr>
<tr>
<td>Hot</td>
<td>True</td>
</tr>
</tbody>
</table>

If sentence a is true in model m, then m **satisfies** (or **is a model of**) a.

\[\text{Cold} \quad \neg \text{Raining} \quad (\text{Raining} \lor \text{Cloudy}) \quad \text{Cold} \iff \neg \text{Hot} \]

\[\begin{align*}
\text{True} \\
\text{True} \\
\text{True} \\
\text{True} \\
\text{False}
\end{align*} \]
Models and Worlds

The KB specifies a subset of all possible models - those that satisfy all sentences in the KB.

Each new piece of knowledge narrows down the set of possible models.
Summary

Knowledge Base

- Set of facts *asserted to be true* about the world.

Model

- Formalization of “the world”.
- An assignment to values to all variables.

Satisfaction

- Satisfies a sentence if that sentence is true in the model.
- Satisfies a KB if all sentences sure in model.
- Knowledge in the KB *narrows down* the set of possible world models.
Inference

So if we have a KB, then what?

Given:

\[
\begin{align*}
&\text{Cold} \\
&\neg \text{Raining} \\
&(\text{Raining} \lor \text{Cloudy}) \\
&\text{Cold} \iff \neg \text{Hot}
\end{align*}
\]

We’d like to ask it questions.

... we can ask: \textit{Hot}?

\textbf{Inference:} process of deriving new facts from given facts.
Inference (Formally)

KB A **entails** sentence B

if and only if:

every model which satisfies A, satisfies B.

In other words: if A is true then B **must be true**. *Only conclusions you can make about the true world.*

Most frequent form of inference: \(KB \models Q \)

That’s nice, but how do we compute?
Logical Inference

Take a KB, and produce new sentences of knowledge.

Inference algorithms: methods for finding a proof of Q using a set of inference rules.

Desirable properties:
 • Don’t make any mistakes
 • Be able to prove all possible true statements
Inference (formally)

Could just enumerate worlds …

Knowledge Base

Query Sentence

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold</td>
<td>False</td>
</tr>
<tr>
<td>Raining</td>
<td>False</td>
</tr>
<tr>
<td>Cloudy</td>
<td>False</td>
</tr>
<tr>
<td>Hot</td>
<td>False</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold</td>
<td>True</td>
</tr>
<tr>
<td>Raining</td>
<td>True</td>
</tr>
<tr>
<td>Cloudy</td>
<td>True</td>
</tr>
<tr>
<td>Hot</td>
<td>True</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold</td>
<td>True</td>
</tr>
<tr>
<td>Raining</td>
<td>False</td>
</tr>
<tr>
<td>Cloudy</td>
<td>False</td>
</tr>
<tr>
<td>Hot</td>
<td>False</td>
</tr>
</tbody>
</table>

OK

Not OK
Inference Rules

Often written in form:

\[A \lor B, \neg B \]

Start with \(A \lor B \), \(\neg B \)

\[\underline{A} \]

Given this knowledge, can infer this.
Proofs

For example, given KB:

\[\text{Cold} \quad \neg \text{Raining} \quad (\text{Raining} \lor \text{Cloudy}) \]
\[\text{Cold} \iff \neg \text{Hot} \]

We ask:

\[\text{Hot?} \]

\textbf{Inference:}

\[\text{Cold} = \text{True} \]
\[\text{True} \iff \neg \text{Hot} \]
\[\neg \text{Hot} = \text{True} \]
\[\text{Hot} = \text{False} \]
Inference ...

We want to start somewhere (KB).
We’d like to apply some rules.
But there are lots of ways we might go.
... in order to reach some goal (sentence).

Does that sound familiar?

Inference as search:

<table>
<thead>
<tr>
<th>Set of states</th>
<th>True sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start state</td>
<td>KB</td>
</tr>
<tr>
<td>Set of actions and action rules</td>
<td>Inference rules</td>
</tr>
<tr>
<td>Goal test</td>
<td>Q in sentences?</td>
</tr>
<tr>
<td>Cost function</td>
<td>1 per rule</td>
</tr>
</tbody>
</table>
Resolution

The following inference rule is **both sound and complete**:

\[
\begin{align*}
a_1 \lor \ldots \lor a_{i-1} \lor c \lor a_{i+1} \lor \ldots \lor a_n, & \quad b_1 \lor \ldots \lor b_{j-1} \lor \neg c \lor b_{j+1} \lor \ldots \lor b_m \\
\hline
a_1 \lor \ldots \lor a_{i-1} \lor a_{i+1} \lor \ldots \lor a_n \lor b_1 \lor \ldots \lor b_{j-1} \lor b_{j+1} \lor \ldots \lor b_m
\end{align*}
\]

This is called **resolution**. It is sound and complete when combined with a sound and complete search algorithm.
The World and the Model

KB \rightarrow \text{inference (syntactic)} \rightarrow \text{true in the world}

observation \rightarrow (semantics) \rightarrow \text{true in the world}
Languages

Propositional logic isn’t very powerful.

How might we get more power?
First-Order Logic

More sophisticated representation language.

World can be described by:

- **objects**
- **functions** $\text{ColorOf}()$ and $\text{Adjacent}(\cdot, \cdot)$
- **predicates** $\text{IsApple}(\cdot)$
First-Order Logic

Objects:

- A “thing in the world”
 - Apples
 - Red
 - The Internet
 - Team Edward
 - Reddit
- A *name* that references something.
- Cf. a *noun.*
First-Order Logic

Functions:

- **Operator that maps object(s) to single object.**
 - $\text{ColorOf}(\cdot)$
 - $\text{ObjectNextTo}(\cdot)$
 - $\text{SocialSecurityNumber}(\cdot)$
 - $\text{DateOfBirth}(\cdot)$
 - $\text{Spouse}(\cdot)$

$\text{ColorOf(MyApple271)} = \text{Red}$
First-Order Logic

Predicates - *replaces proposition*

Like a function, but returns *True* or *False* - holds or does not.

- \(IsApple(\cdot) \)
- \(ParentOf(\cdot, \cdot) \)
- \(BiggerThan(\cdot, \cdot) \)
- \(HasA(\cdot, \cdot) \)
First-Order Logic

We can build up complex sentences using logical connectives, as in propositional logic:

- $\text{Fruit}(X) \implies \text{Sweet}(X)$
- $\text{Food}(X) \implies (\text{Savory}(X) \lor \text{Sweet}(X))$
- $\text{ParentOf}(\text{Bob}, \text{Alice}) \land \text{ParentOf}(\text{Alice}, \text{Humphrey})$
- $\text{Fruit}(X) \implies \text{Tasty}(X) \lor (\text{IsTomato}(X) \land \neg \text{Tasty}(X))$

Predicates can appear where a propositions appear in propositional logic, but functions cannot.
Models for First-Order Logic

Propositional logic: for a model:
- Set the value of every variable in the KB to True or False.
- 2^n models possible for n propositions.

The situation is much more complex for FOL.

A model in FOL consists of:
- A set of objects.
- A set of functions + values for all inputs.
- A set of predicates + values for all inputs.
Models for First-Order Logic

Consider:

Objects
- Orange
- Apple

Predicates
- $Is\text{Red}(\cdot)$
- $Has\text{VitaminC}(\cdot)$

Functions
- $Opposite\text{Of}(\cdot)$

Example model:

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Argument</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Is\text{Red}$</td>
<td>Orange</td>
<td>False</td>
</tr>
<tr>
<td>$Is\text{Red}$</td>
<td>Apple</td>
<td>True</td>
</tr>
<tr>
<td>$Has\text{VitaminC}$</td>
<td>Orange</td>
<td>True</td>
</tr>
<tr>
<td>$Has\text{VitaminC}$</td>
<td>Apple</td>
<td>True</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Argument</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Opposite\text{Of}$</td>
<td>Orange</td>
<td>Apple</td>
</tr>
<tr>
<td>$Opposite\text{Of}$</td>
<td>Apple</td>
<td>Orange</td>
</tr>
</tbody>
</table>
Knowledge Bases in FOL

A KB is now:

- A set of objects.
- A set of predicates.
- A set of functions.
- A set of sentences using the predicates, functions, and objects, and **asserted to be true**.

Objects
- Orange
- Apple

Predicates
- \(IsRed(\cdot) \)
- \(HasVitaminC(\cdot) \)

Functions
- \(OppositeOf(\cdot) \)

\(IsRed(Apple) \)
\(HasVitaminC(Orange) \)
Knowledge Bases in FOL

Listing everything is tedious …
 • Especially when general relationships hold.

We would like a way to say more general things about the world than explicitly listing truth values for each object.
Quantifiers

New weapon:
 • **Quantifiers.**

Make generic statements about properties that hold for the entire collection of objects in our KB.

Natural way to say things like:
 • All fish have fins.
 • All books have pages.
 • There is a textbook about AI.

Key idea: **variable + binding rule.**
Existential Quantifiers

There exists object(s) such that a sentence holds.

$\exists x, \text{IsPresident}(x)$
Universal Quantifiers

A sentence holds for all object(s).

\[\forall x, \text{HasStudentNumber}(x) \implies \text{Person}(x) \]
Quantifiers

Difference in strength:

• Universal quantifier is very strong.
 • So use weak sentence.

\[\forall x, Bird(x) \implies Feathered(x) \]

• Existential quantifier is very weak.
 • So use strong sentence.

\[\exists x, Car(x) \land ParkedIn(x, E23) \]
Compound Quantifiers

\[\forall x, \exists y, Person(x) \implies Name(x, y) \]

“every person has a name”
Common Pitfalls

\[\forall x, Bird(x) \land Feathered(x) \]
Common Pitfalls

\exists x, \text{Car}(x) \implies \text{ParkedIn}(x, E23)
Inference in First-Order Logic

Ground term, or **literal** - an actual object:

\[MyApple_{12} \]

vs. a **variable**:

\[x \]

If you have only ground terms, you can convert to a propositional representation and proceed from there.

\[IsTasty(Apple) : IsTasty_{Apple} \]
Instantiation

Getting rid of variables: **instantiate** a variable to a literal.

 Universally quantified:

\[\forall x, \text{Fruit}(x) \implies \text{Tasty}(x) \]

\[\text{Fruit(Apple)} \implies \text{Tasty(Apple)} \]

\[\text{Fruit(Orange)} \implies \text{Tasty(Orange)} \]

\[\text{Fruit(MyCar)} \implies \text{Tasty(MyCar)} \]

\[\text{Fruit(TheSky)} \implies \text{Tasty(TheSky)} \]

For every object in the KB, just write out the rule with the variables substituted.
Instantiation

Existentially quantified:

- Invent a new name *(Skolem constant)*

\[\exists x, \text{Car}(x) \land \text{ParkedIn}(x, E23) \]

\[\text{Car}(C) \land \text{ParkedIn}(C, E23) \]

- Name cannot be one you’ve already used.
- Rule can then be discarded.
PROLOG

PROgramming in LOGic (Colmerauer, 1970s)
 • General-purpose AI programming language
 • Based on First-Order Logic
 • Declarative

 • Use centered in Europe and Japan
 • Fifth-Generation Computer Project

 • Some parts of Watson (pattern matching over NLP)
 • Often used as component of a system.
DENDRAL and MYCIN

DENDRAL: (Feigenbaum et al. ~1965)
- Identify unknown organic molecules
- Eliminate most “chemically implausible” hypotheses.

MYCIN: (Shortliffe et al., 1970s)
- Identify bacteria causing severe infections.
- “research indicated that it proposed an acceptable therapy in about 69% of cases, which was better than the performance of infectious disease experts.”

Major issue: the Knowledge Bottleneck.