Games

“Chess is the Drosophila of Artificial Intelligence”
Kronrod, c. 1966

TuroChamp, 1948

“The chess machine is an ideal one to start with, since: (1) the problem is sharply defined both in allowed operations (the moves) and in the ultimate goal (checkmate); (2) it is neither so simple as to be trivial nor too difficult for satisfactory solution; (3) chess is generally considered to require "thinking" for skillful play; a solution of this problem will force us either to admit the possibility of a mechanized thinking or to further restrict our concept of "thinking"; (4) the discrete structure of chess fits well into the digital nature of modern computers.”
“Solved” Games

A game is solved if an optimal strategy is known.

Strong solved: *all positions*.
Weakly solved: *some (start) positions*.
Typical Game Setting

Games are usually:

- 2 player
- Alternating
- Zero-sum
 - Gain for one loss for another.
- Perfect information
Typical Game Setting

Very much like search:
• Set of possible states
• Start state
• Successor function
• Terminal states (many)
• Objective function

The key difference is alternating control.
Game Trees

player 1 moves

player 2 moves

player 1 moves
Key Differences vs. Search

- You select to max score
- They select to min score
- Only get score here
Minimax

Propagate value backwards through tree.

\[
V(s0) = \max(V(s1), V(s2), V(s3))
\]

\[
V(s2) = \min(V(s4), V(s5), V(s6))
\]

\[
V(s5) = \max(V(g1), V(g2), V(g3))
\]
Minimax Algorithm

Compute value for each node, going backwards from the end-nodes.

Max (min) player: select action to maximize (minimize) return.

Optimal for both players (if zero sum).
 Assumes perfect play, worst case.

Can run as depth first:
• Time $O(b^d)$
• Space $O(bd)$

Require the agent to evaluate the whole tree.
Minimax

The diagram represents a minimax tree with players P1 and P2. The nodes are labeled with values that indicate the utility for each player. The tree is structured as follows:

- **P1** is the maximizing player and is represented at the root of the tree.
- **P2** is the minimizing player and is at the leaves of the tree.

The values at the leaves are:
- 10
- 5
- -3
- 20
- -5
- 2

The tree is labeled with max and min to indicate the maximizing and minimizing strategies at each level.
Games of Chance

What if there is a chance element?
Stochasticity

An outcome is called *stochastic* when it is determined at random.
Stochasticity

How to factor in stochasticity?

Agent does not get to choose.

• Selecting the \textit{max} outcome is optimistic.
• Selecting the \textit{min} outcome is pessimistic.

Must be \textit{probability-aware}.

Be aware of \textbf{who is choosing} at each level.

• Sometimes it is you.
• Sometimes it is an adversary.
• Sometimes it is a random number generator.

\textit{insert randomization layer}
ExpectiMax

You select (max)

They select to min score

Stochastic

Stochastic
Expectation

How to compute value of stochastic layer?

What is the average die value?

$$\frac{(1 + 2 + 3 + 4 + 5 + 6)}{6} = 3.5$$

This factors in both probabilities and the value of event.

In general, given random event x and function $f(x)$:

$$E[f(x)] = \sum_{x} P(x) f(x)$$
ExpectiMax

You select (max)

They select to min score

Stochastic (expectation)

p1

p2

p1

p1
In Practice

Can run as depth first:
 • Time $O(b^d)$
 • Space $O(bd)$

Depth is too deep.
 • 10s to 100s of moves.

Breadth is too broad.
 • Chess: 35, Go: 361.

Full search never terminates for non-trivial games.
What Is To Be Done?

Terminate early.
Branch less often.
Alpha-Beta
At a min layer:
If $V(B) \leq V(A)$ then prune B’s siblings.
At a max layer:
If $V(A) \geq V(B)$ then prune A’s siblings.
Alpha-Beta

More generally:
• α is highest max
• β is lowest min

If max node:
• prune if $v \geq \beta$

If min node:
• prune if $v \leq \alpha$
function ALPHA-BETA-SEARCH(state) returns an action
 \(v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty) \)
 return the action in ACTIONS(state) with value \(v \)

function MAX-VALUE(state, \(\alpha \), \(\beta \)) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 \(v \leftarrow -\infty \)
 for each \(a \) in ACTIONS(state) do
 \(v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta)) \)
 if \(v \geq \beta \) then return \(v \)
 \(\alpha \leftarrow \text{MAX}(\alpha, v) \)
 return \(v \)

function MIN-VALUE(state, \(\alpha \), \(\beta \)) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 \(v \leftarrow +\infty \)
 for each \(a \) in ACTIONS(state) do
 \(v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a), \alpha, \beta)) \)
 if \(v \leq \alpha \) then return \(v \)
 \(\beta \leftarrow \text{MIN}(\beta, v) \)
 return \(v \)

(from Russell and Norvig)
Alpha Beta Pruning

Single most useful search control method:
 • Throw away whole branches.
 • Use the min-max behavior.

Resulting algorithm: \textit{alpha-beta pruning}.

Empirically: \textit{square roots} branching factor.
 • Effectively doubles the search horizon.

Alpha-beta makes the difference between novice and expert computer game players. \textit{Most successful players use alpha-beta.}
What Is To Be Done?

Terminate early.
Branch less often.
In Practice

Solution: substitute evaluation function.

- Like a heuristic - estimate value.
- In this case, probability of win or expected score.

- Common strategy:
 - Run to fixed depth then estimate.
 - Careful lookahead to depth d, then guess.
Evaluation Functions
Evaluation Functions
Deep Blue (1997)

480 Special Purpose Chips
200 million positions/sec
Search depth 6-8 moves (up to 20)
Evaluation Functions
Search Control

Horizon Effects
 • What if something interesting at horizon + 1?
 • How do you know?

More sophisticated strategies:
 • When to generate more nodes?
 • How to selectively expand the frontier?
 • How to allocate fixed move time?
Monte Carlo Tree Search

Continually estimate value
Adaptively explore
Random rollouts to evaluate
Monte Carlo Tree Search

Step 1: path selection.
Monte Carlo Tree Search

Step 1: path selection.

\[\frac{w_i}{n_i} + c \sqrt{\frac{\log n}{n_i}} \]

UCT
Monte Carlo Tree Search

Step 2: expansion.
Monte Carlo Tree Search

Step 3: rollout.
Monte Carlo Tree Search

Step 4: update.

terminal state
Games Today

World champion level:
- Backgammon
- Chess
- Checkers (solved)
- Othello
- Some poker types:

Perform well:
- Bridge
- Other poker types

Far off: Go
Go
Very Recently

Lee Sedol

1 - 4

AlphaGo (Google Deepmind)
Board Games

“… board games are more or less done and it's time to move on.”