Games

“Chess is the Drosophila of Artificial Intelligence”
Kronrod, c. 1966

TuroChamp, 1948

“The chess machine is an ideal one to start with, since: (1) the problem is sharply defined both in allowed operations (the moves) and in the ultimate goal (checkmate); (2) it is neither so simple as to be trivial nor too difficult for satisfactory solution; (3) chess is generally considered to require "thinking" for skillful play; a solution of this problem will force us either to admit the possibility of a mechanized thinking or to further restrict our concept of "thinking"; (4) the discrete structure of chess fits well into the digital nature of modern computers.”
“Solved” Games

A game is solved if an optimal strategy is known.

Strong solved: all positions.
Weakly solved: some (start) positions.
Typical Game Setting

Games are usually:

• 2 player
• Alternating
• Zero-sum
 • Gain for one loss for another.
• Perfect information
Typical Game Setting

Very much like search:
- Set of possible states
- Start state
- Successor function
- Terminal states (many)
- Objective function

The key difference is alternating control.
Game Trees

player 1 moves

player 2 moves

player 1 moves
Key Differences vs. Search

They select to min score

You select to max score

Only get score here
Minimax

Propagate value backwards through tree.

\[
V(s_0) = \max(V(s_1), V(s_2), V(s_3))
\]

\[
V(s_2) = \min(V(s_4), V(s_5), V(s_6))
\]

\[
V(s_5) = \max(V(g_1), V(g_2), V(g_3))
\]
Minimax Algorithm

Compute value for each node, going backwards from the end-nodes.

Max (min) player: select action to maximize (minimize) return.

Optimal for both players (if zero sum).

Assumes perfect play, worst case.

Can run as depth first:

- Time $O(b^d)$
- Space $O(bd)$

Require the agent to evaluate the whole tree.
In Practice

Can run as depth first:
 • Time $O(b^d)$
 • Space $O(bd)$

Depth is too deep.
 • 10s to 100s of moves.

Breadth is too broad.
 • Chess: 35, Go: 361.

Full search never terminates for non-trivial games.
What Is To Be Done?

Terminate early.
Branch less often.
Alpha-Beta

The diagram illustrates a game tree with nodes representing players and their moves. The top node is marked with 'p1', indicating the maximizer (max) player, while the bottom nodes are marked with 'p2', indicating the minimizer (min) player. The numbers on the nodes represent the values assigned to the nodes, with green numbers indicating max values and red numbers indicating min values.

- The node 'p1' has two branches: one leading to a node with value '5' and the other to a node with value '10'.
- The node 'p2' has two branches: one leading to a node with value '5' and the other to a node with value '-3'.
- The node '-3' has a branch leading to a node with value '-5'.

The arrows represent the possible moves, with thicker lines indicating higher values. The goal is to maximize the value for the maximizer player and minimize the value for the minimizer player.
At a min layer:
If $V(A) \leq V(B)$ then prune A’s siblings.
At a max layer:
If $V(A) \geq V(B)$ then prune A's siblings.
Alpha Beta Pruning

Single most useful search control method:
 • Throw away whole branches.
 • Use the min-max behavior.

Resulting algorithm: alpha-beta pruning.

Empirically: square roots branching factor.
 • Effectively doubles the search horizon.

Alpha-beta makes the difference between novice and expert computer game players. Most successful players use alpha-beta.
What Is To Be Done?

Terminate early.
Branch less often.
In Practice

Solution: substitute evaluation function.

- Like a heuristic - estimate value.
- In this case, probability of win or expected score.

Common strategy:
- Run to fixed depth then estimate.
- Careful lookahead to depth d, then guess.
Evaluation Functions
Evaluation Functions
Deep Blue (1997)

480 Special Purpose Chips
200 million positions/sec
Search depth 6-8 moves (up to 20)
Evaluation Functions
Search Control

Horizon Effects
 • What if something interesting at horizon + 1?
 • How do you know?

More sophisticated strategies:
 • When to generate more nodes?
 • How to selectively expand the frontier?
 • How to allocate fixed move time?
Monte Carlo Tree Search

Continually estimate value
Adaptively explore
Random rollouts to evaluate
Monte Carlo Tree Search

Step 1: path selection.
Monte Carlo Tree Search

Step 1: path selection.

\[\frac{w_i}{n_i} + c\sqrt{\frac{\log n}{n_i}} \]

UCT
Monte Carlo Tree Search

Step 2: expansion.
Monte Carlo Tree Search

Step 3: rollout.
Step 4: update.
Games of Chance

What if there is a chance element?
Stochasticity

An outcome is called *stochastic* when it is determined at random.

![Diagram of a dice with probabilities](image)

- $p = \frac{1}{6}$ for each face

The probabilities sum to 1.
Stochasticity

How to factor in stochasticity?

Agent does not get to choose.
 • Selecting the max outcome is optimistic.
 • Selecting the min outcome is pessimistic.

Must be probability-aware.

Be aware of who is choosing at each level.
 • Sometimes it is you.
 • Sometimes it is an adversary.
 • Sometimes it is nature.
Expectation

What is the *average die value*?

\[
\frac{(1 + 2 + 3 + 4 + 5 + 6)}{6} = 3.5
\]

This factors in both probabilities and the value of event.

In general, given random event \(x \) and function \(f(x) \):

\[
E[f(x)] = \sum_x P(x) f(x)
\]

Insert expectation layer to accommodate stochastic events.
ExpectiMax

stochastic (expectation)

you select (max)

they select to min score

stochastic (expectation)
Games Today

World champion level:
• Backgammon
• Chess
• Checkers (solved)
• Othello
• Some poker types:

Perform well:
• Bridge
• Other poker types

Far off: Go
Go
Very Recently

Lee Sedol

1 - 4

AlphaGo (Google Deepmind)
Board Games

“… board games are more or less done and it's time to move on.”