Game Theory
Goals

- Define “game”
- Link games to AI
- Introduce basic terminology of game theory
- Overall: give you a new way to think about some problems
What Is Game Theory?

● Field of work involving games, answering such questions as:

■ How should you play games?

■ How do most people play games?

■ How can you create a game that has certain desirable properties?
What Is a Game?
What Is a Game?

It is a situation in which there are:

- **Players**: decision-making agents

- **States**: where are we in the game?

- **Actions** that players can take that determine (possibly randomly) the next state

- **Outcomes** or **Terminal States**

- **Goals** for each player (give a score to each outcome)
Example: Rock-Paper-Scissors

- **Players?**
 - 2 players
- **States?**
 - before decisions are made, all possibilities after decisions are revealed
- **Actions?**
 - \{Rock, Paper, Scissors\}
- **Outcomes?**
 - \{(Rock, Rock), (Rock, Paper), \ldots, (Scissors, Scissors)\}
- **Goals?**
 - Maximize score, where score is 1 for win, 0 for loss, ½ for tie
Example: Classes

- **Players?**
 - All students, instructor(s)

- **States?**
 - Points in time

- **Actions?**
 - Students: `study(time), doHomework(), sleep(time)`
 - Instructors: `chooseInstructionSpeed(speed), review(topic, time), giveExample(topic, time)`

- **Outcomes?**
 - Amount learned by students, grades, time spent, memories made

- **Goals?**
 - Attain some ideal balance over attributes that define the outcomes
Why Study Game Theory in an AI Course?

- making good decisions ⊆ AI
- making good decisions in games ⊆ Game Theory
- AI often created for situations that can be thought of as games
How Do Games Differ?
Sequential vs. Simultaneous Turns

<table>
<thead>
<tr>
<th>Sequential</th>
<th>Simultaneous</th>
</tr>
</thead>
</table>

Sequential vs. Simultaneous Turns

Sequential

Simultaneous

- Chess piece
- Graduation cap
- People holding puzzle pieces
- People holding apples and wheat

- Money in an envelope
Constant-Sum vs. Variable-Sum

Constant-Sum

Variable-Sum
Constant-Sum vs. Variable-Sum

Constant-Sum

Variable-Sum
Restricting the Discussion

- 2-player, one-turn, simultaneous-move games
"Normal Form" Representation

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>$\frac{1}{2}, \frac{1}{2}$</td>
<td>0, 1</td>
<td>1, 0</td>
</tr>
<tr>
<td>P</td>
<td>1, 0</td>
<td>$\frac{1}{2}, \frac{1}{2}$</td>
<td>0, 1</td>
</tr>
<tr>
<td>S</td>
<td>0, 1</td>
<td>1, 0</td>
<td>$\frac{1}{2}, \frac{1}{2}$</td>
</tr>
</tbody>
</table>
Strategies

- **Strategy** = A specification of what to do in every single non-terminal state of the game

- Functions from states to (probability distributions over) legal actions
 - Pure vs. Mixed

Examples:
- Trading: I’ll accept an offer of $20 or higher, but not lower
- Chess: Full lookup table of moves and actions to make
What’s the best strategy in rock-paper-scissors?

- It depends on what the other player is doing!
Best Response

- But if we knew what the other player’s strategy…?
- Then we could choose the best strategy. Now it’s an optimization problem!
Dominated Strategies

- A strategy s is said to be dominated by a strategy s^* if s^* always gives higher payoff.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3, 3</td>
<td>0, 5</td>
</tr>
<tr>
<td>D</td>
<td>5, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>
Dominated Strategies

- A strategy s is said to be dominated by a strategy s^* if s^* always gives higher payoff.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3, 3</td>
<td>0, 5</td>
</tr>
<tr>
<td>D</td>
<td>5, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>
A strategy \(s \) is said to be dominated by a strategy \(s^* \) if \(s^* \) always gives higher payoff.
Dominant Strategies

- A strategy is *dominant* if it dominates all other strategies.
Iterated Dominance

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>6, 1</td>
<td>1, 0</td>
<td>6, 2</td>
</tr>
<tr>
<td>M</td>
<td>1, 4</td>
<td>0, 5</td>
<td>5, 5</td>
</tr>
<tr>
<td>D</td>
<td>3, 4</td>
<td>4, 3</td>
<td>2, 0</td>
</tr>
</tbody>
</table>
Iterated Dominance

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>6, 1</td>
<td>1, 0</td>
<td>6, 2</td>
</tr>
<tr>
<td>M</td>
<td>1, 4</td>
<td>0, 5</td>
<td>5, 5</td>
</tr>
<tr>
<td>D</td>
<td>3, 4</td>
<td>4, 3</td>
<td>2, 0</td>
</tr>
</tbody>
</table>
Iterated Dominance

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>6,1</td>
<td>1,0</td>
<td>6,2</td>
</tr>
<tr>
<td>M</td>
<td>1,4</td>
<td>0,5</td>
<td>5,5</td>
</tr>
<tr>
<td>D</td>
<td>3,4</td>
<td>4,3</td>
<td>2,0</td>
</tr>
</tbody>
</table>
Iterated Dominance

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>6,1</td>
<td>1,0</td>
<td>6,2</td>
</tr>
<tr>
<td>M</td>
<td>1,4</td>
<td>0,5</td>
<td>5,5</td>
</tr>
<tr>
<td>D</td>
<td>3,4</td>
<td>4,3</td>
<td>2,0</td>
</tr>
</tbody>
</table>
Iterated Dominance

- *Iterated Elimination of Dominated Strategies (IEDS)*
- Won’t always produce a unique solution
- Common Knowledge of Rationality (CKR)
- “Faithful Approach”
Conservative Approach: Maximin

- Ensure the best worst-case scenario possible

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>6, 1</td>
<td>1, 0</td>
<td>6, 2</td>
</tr>
<tr>
<td>M</td>
<td>1, 4</td>
<td>0, 5</td>
<td>5, 5</td>
</tr>
<tr>
<td>D</td>
<td>3, 4</td>
<td>4, 3</td>
<td>2, 0</td>
</tr>
</tbody>
</table>
Two Different Approaches

- Faithful approach: assume CKR
- Conservative approach: assume nothing, and also avoid risk
Your Turn!

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>3, 1</td>
<td>2, 0</td>
<td>0, 2</td>
</tr>
<tr>
<td>M</td>
<td>4, 7</td>
<td>3, 6</td>
<td>1, 5</td>
</tr>
<tr>
<td>D</td>
<td>3, 4</td>
<td>0, 5</td>
<td>5, 0</td>
</tr>
</tbody>
</table>
Your Turn! (Maximin)

<table>
<thead>
<tr>
<th>L</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>3, 1</td>
<td>2, 0</td>
</tr>
<tr>
<td>M</td>
<td>4, 7</td>
<td>3, 6</td>
</tr>
<tr>
<td>D</td>
<td>3, 4</td>
<td>0, 5</td>
</tr>
</tbody>
</table>
Your Turn! (IEDS)

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>3, 1</td>
<td>2, 0</td>
<td>0, 2</td>
</tr>
<tr>
<td>M</td>
<td>4, 7</td>
<td>3, 6</td>
<td>1, 5</td>
</tr>
<tr>
<td>D</td>
<td>3, 4</td>
<td>0, 5</td>
<td>5, 0</td>
</tr>
</tbody>
</table>
Your Turn! (IEDS)
<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>3, 1</td>
<td>2, 0</td>
<td>0, 2</td>
</tr>
<tr>
<td>M</td>
<td>4, 7</td>
<td>3, 6</td>
<td>1, 5</td>
</tr>
<tr>
<td>D</td>
<td>3, 4</td>
<td>0, 5</td>
<td>5, 0</td>
</tr>
</tbody>
</table>
Your Turn! (IEDS)

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th></th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>3,1</td>
<td>2,0</td>
<td>0,2</td>
</tr>
<tr>
<td>M</td>
<td>4,7</td>
<td>3,6</td>
<td>1,5</td>
</tr>
<tr>
<td>D</td>
<td>3,4</td>
<td>0,5</td>
<td>5,0</td>
</tr>
</tbody>
</table>
Nash Equilibrium

- **strategy profile** - specification of strategies for all players

- **Nash equilibrium** - strategy profile such that players are mutually best-responding

- In other words: From a NE, no player can do better by switching strategies alone
Nash Equilibrium: Stag Hunt

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2, 2</td>
<td>2, 0</td>
</tr>
<tr>
<td>S</td>
<td>0, 2</td>
<td>3, 3</td>
</tr>
</tbody>
</table>

Experiment!
Nash Equilibrium: Stag Hunt

Are there dominated strategies?

Are there more equilibria?

Play B with probability $\frac{1}{3}$, S with probability $\frac{2}{3}$
Bigger Example of NE

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>9, 1</td>
<td>10, 6</td>
<td>1, 3</td>
</tr>
<tr>
<td>M</td>
<td>6, 5</td>
<td>6, 1</td>
<td>6, 5</td>
</tr>
<tr>
<td>D</td>
<td>8, 1</td>
<td>4, 10</td>
<td>8, 10</td>
</tr>
</tbody>
</table>
How to Find NE

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>9, 1</td>
<td>10, 6</td>
<td>1, 3</td>
</tr>
<tr>
<td>M</td>
<td>6, 5</td>
<td>6, 1</td>
<td>6, 5</td>
</tr>
<tr>
<td>D</td>
<td>8, 1</td>
<td>4, 10</td>
<td>8, 10</td>
</tr>
</tbody>
</table>
Properties of NE

- There is always at least one

- If IEDS produces a unique solution, it is a NE.
Next time:

- Learn algorithms for finding maximin pure strategies in sequential, constant-sum, many-turn games