Informed Search

George Konidaris
gdk@cs.brown.edu

Spring 2017
Recall: Search

Basic to problem solving:

- How to take action to reach a goal?
Informed Search

What if we know *something* about the search?

How should we include that knowledge?
In what form should it be expressed to be useful?
Formal Definition

Set of states S

Start state $s \in S$

Set of actions A and action rules $a(s) \rightarrow s'$

Goal test $g(s) \rightarrow \{0, 1\}$

Cost function $C(s, a, s') \rightarrow \mathbb{R}^+$

So a search problem is specified by a tuple, (S, s, A, g, C).
Problem Statement

Find a sequence of actions a_1, \ldots, a_n and corresponding states s_1, \ldots, s_n

... such that:

\[s_0 = s \]
\[s_i = a_i(s_{i-1}), \quad i = 1, \ldots, n \]
\[g(s_n) = 1 \]

while minimizing:

\[\sum_{i=1}^{n} C(s_{i-1}, a, s_i) \]

minimize sum of costs - rational agent

start state
legal moves
end at the goal
The Frontier

Key thing in search is managing the frontier.
Uninformed Searches

Simple strategy for choosing next node:

- Choose the shallowest one (breadth-first)
- Choose the deepest one (depth-first)

Neither guaranteed to find the least-cost path.

What if we chose the one with lowest cost?
Uniform-Cost

Order the nodes in the frontier by *cost-so-far*
 • Cost from the start state to that node.

Open the next node with the smallest cost-so-far
 • Optimal solution
 • Complete (provided no negative costs)
Uniform-Cost

Expand cheapest node
Use whole path cost
Uniform-Cost

Expand cheapest node
Use whole path cost
Uniform-Cost

Expand cheapest node
Use *whole path* cost
Uniform-Cost

Expand cheapest node
Use *whole path* cost
What’s the Insight?

The *cost-so-far* tells us how much it cost to get to a node.

- Go to cheapest nodes first.

How might we prove that this is *optimal*?
What’s the Insight?

The cost-so-far tells us how much it cost to get to a node.
 • Go to cheapest nodes first.

What remains?

Total cost = cost-so-far + cost-to-go

Cost-so-far: cost from start to node.
Cost-to-go: cost from node to goal.
Informed Search

Key idea: *heuristic function.*

- $h(s)$ - estimates cost-to-go
- Cost to go *from* state *to* solution.
- Problem specific (hence *informed*)
Greed

What if we expand the node with lowest $h(s)$?
Informed Search: A*

A* algorithm:

- \(g(s) \) - cost so far (start to \(s \)).
- Expand \(s \) that minimizes \(g(s) + h(s) \) \(\text{both} \)
- Manage frontier as priority queue.

- Admissible heuristic: never overestimates cost.
 \[h(s) \leq h^*(s) \]

- \(h(s) = 0 \) if \(s \) is a goal state, so \(g(s) + h(s) = c(s) \)

- If \(h \) is admissible, A* is optimal.
- If \(h(s) \) is exact, runs in \(O(bd) \) time.
Admissible Heuristics

Optimal solution

Proof by contradiction
Example Heuristic
Example Heuristics
More on Heuristics

Heuristic h_1 dominates h_2 if $h_1(s) \geq h_2(s)$ for all s.

- Is h_1 or h_2 better? (If they’re both admissible.)

How might you combine two heuristics?
More on Heuristics

A* is optimally efficient: any algorithm using h must expand the nodes A* expands.

Why?
More on Heuristics

Ideal heuristics:

• Fast to compute.
• Close to real costs.
• Some programs *automatically generate* heuristics.