Basic to problem solving:

• How to take action to reach a goal?
Choices have consequences!
Search

Formalizing the problem statement …

• Problem can be in various states.
• Start in an *initial state*.
• Have some *actions* available.
• Each action has a cost.
• Want to reach some *goal*, minimizing cost.

Happens in simulation.

Not web search.
Formal Definition

Set of states S

Start state $s \in S$

Set of actions A and action rules $a(s) \rightarrow s'$

Goal test $g(s) \rightarrow \{0, 1\}$

Cost function $C(s, a, s') \rightarrow \mathbb{R}^+$

So a search problem is specified by a tuple, (S, s, A, g, C).
Problem Statement

Find a sequence of actions a_1, \ldots, a_n and corresponding states s_1, \ldots, s_n

... such that:

\begin{align*}
 s_0 &= s \\
 s_i &= a_i(s_{i-1}), \quad i = 1, \ldots, n \\
 g(s_n) &= 1
\end{align*}

start state

legal moves

end at the goal

while minimizing:

$$
\sum_{i=1}^{n} C(s_{i-1}, a, s_i) \quad \text{minimize sum of costs - rational agent}
$$
Formal Models

What are they good for?
Example

Sudoku

States: all legal Sudoku boards.

Start state: a particular, partially filled-in, board.

Actions: inserting a valid number into the board.

Goal test: all cells filled and no collisions.

Cost function: 1 per move.
Example

Flights - e.g., *ITA Software*.

States: airports, times.

Start state: TF Green, 5pm.

Actions: available flights from each airport.

Goal test: reached Tokyo by midnight tomorrow.

Cost function: time and/or money.
The Search Tree

Classical conceptualization of search.
The Search Tree
Important Quantities

Breadth (branching factor)
The Search Tree

Depth
- min solution depth \(m \)
- depth \(d \)

\[O\left(b^d\right) \] leaves in a tree of breadth \(b \), depth \(d \).

\[\sum_{i=0}^{d} b^i \in O\left(b^d\right) \] total nodes in the same tree
The Search Tree

Expand the tree one node at a time.
Frontier: set of nodes in tree, but not expanded.

Key to a search algorithm: which node to expand next?
visited = {}
frontier = {s0}
goal_found = false

while not goal_found:
 node = frontier.next()
 frontier.del(node)
 if(g(node)):
 goal_found = true
 else:
 visited.add(node)
 for child in node.children:
 if(not visited.contains(child)):
 frontier.add(child)
How to Expand?

Uninformed strategy:
- nothing known about likely solutions in the tree.

What to do?
- Expand deepest node (*depth-first search*)
- Expand closest node (*breadth-first search*)

Properties
- Completeness
- Optimality
- Time Complexity (*total number of nodes visited*)
- Space Complexity (*size of frontier*)
Depth-First Search

Expand deepest node

s0

s1
Depth-First Search

Expand deepest node
DFS: Time

worst case: solution on this branch

\[O(b^d - b^{d-m}) = O(b^d) \]
DFS: Space

worst case: search reaches bottom

\[O((b - 1)d) = O(bd) \]
Depth-First Search

Properties:
• Completeness: Only for finite trees.
• Optimality: No.
• Time Complexity: $O(b^d)$
• Space Complexity: $O(bd)$

Note that when reasoning about DFS, m is depth of found solution (not necessarily min solution depth).

The deepest node happens to be the one you most recently visited - easy to implement recursively OR manage frontier using LIFO queue.
Breadth-First Search

Expand shallowest node
Breadth-First Search

Expand shallowest node

\[s_0 \]

\[s_1 \]

\[s_2 \]
Breadth-First Search

Expand shallowest node
Breadth-First Search

Expand shallowest node
Breadth-First Search

Expand shallowest node
BFS: Time

\[O(b^{m+1}) \]
BFS: Space

\[O(b^{m+1}) \]
Breadth-First Search

Properties:
• Completeness: Yes.
• Optimality: Yes for constant cost.
• Time Complexity: $O(b^{m+1})$
• Space Complexity: $O(b^{m+1})$

Better than depth-first search in all respects except memory cost - must maintain a large frontier.

Manage frontier using FIFO queue.
Iterative Deepening Search

Combine these two strengths.

The core problems in DFS are a) *not optimal*, and b) *not complete* … because it fails to explore other branches.

Otherwise it’s a very nice algorithm!

Iterative Deepening:
• Run DFS to a fixed depth z.
• Start at $z=1$. If no solution, increment z and rerun.
IDS

run DFS to this depth
IDS

Optimal for constant cost! Proof?

How can that be a good idea?

It duplicates work.

Sure but:

- Low memory requirement (equal to DFS).
- Not many more nodes expanded than BFS. (About twice as many for binary tree.)
IDS

visited $m + l$ times

visited m times

...
IDS (Reprise)

\[
\sum_{i=0}^{m} b^i (m - i + 1) = \frac{b(b^{m+1} - m - 2) + m + 1}{(b - 1)^2}
\]

nodes at level \(i\)

revisits

DFS worst case: \[
\frac{b^{m+1} - 1}{b - 1}
\]
IDS

Key Insight:
• Many more nodes at depth $m+1$ than at depth m.

MAGIC.

“In general, iterative deepening search is the preferred uninformed search method when the state space is large and the depth of the solution is unknown.” (R&N)
Next Week

Informed searches … what if you know something about the solution?

What form should such knowledge take?

How should you use it?