Machine Learning

Subfield of AI concerned with *learning from data*.

Broadly, using:

- *Experience*
- To Improve *Performance*
- On Some *Task*

(Tom Mitchell, 1997)
Supervised Learning

Input:
\[X = \{x_1, \ldots, x_n\} \] inputs
\[Y = \{y_1, \ldots, y_n\} \] labels

Learn to predict new labels.

Given x: y?
Supervised Learning

Input:
\[X = \{x_1, \ldots, x_n\} \quad \text{inputs} \]
\[Y = \{y_1, \ldots, y_n\} \quad \text{labels} \]

Learn to predict new labels.

Given x: y?
Supervised Learning

Input:
\[X = \{x_1, \ldots, x_n\} \quad \text{inputs} \]
\[Y = \{y_1, \ldots, y_n\} \quad \text{labels} \]

Learn to predict new labels.

Given \(x \): \(y \)?

training data
Supervised Learning

Formal definition:

Given training data:

$X = \{x_1, \ldots, x_n\}$ inputs
$Y = \{y_1, \ldots, y_n\}$ labels

Produce:

Decision function $f : X \rightarrow Y$

That minimizes error:

$$\sum_i \text{err}(f(x_i), y_i)$$
Neural Networks

\[\sigma(w \cdot x + c) \]
logistic regression
Deep Neural Networks

\[
\begin{align*}
\mathbf{o}_1 & \rightarrow \mathbf{h}_{n1} \rightarrow \mathbf{h}_{n2} \rightarrow \mathbf{h}_{n3} \\
\mathbf{h}_{n1} & \rightarrow \mathbf{h}_{n2} \rightarrow \mathbf{h}_{n3} \\
\mathbf{x}_1 & \rightarrow \mathbf{h}_{11} \rightarrow \mathbf{h}_{12} \rightarrow \mathbf{h}_{13} \\
\mathbf{x}_2 & \rightarrow \mathbf{h}_{11} \rightarrow \mathbf{h}_{12} \rightarrow \mathbf{h}_{13}
\end{align*}
\]
Nonparametric Methods

Most ML methods are parametric:
- Characterized by setting a few parameters.
- \(y = f(x, w) \)

Alternative approach:
- Let the data speak for itself.
- No finite-sized parameter vector.
- Usually more interesting decision boundaries.
K-Nearest Neighbors

Given training data:

\[X = \{x_1, \ldots, x_n\} \]
\[Y = \{y_1, \ldots, y_n\} \]

Distance metric \(D(x_i, x_j) \)

For a new data point \(x_{\text{new}} \):

- find \(k \) nearest points in \(X \) (measured via \(D \))
- set \(y_{\text{new}} \) to the majority label
K-Nearest Neighbors
K-Nearest Neighbors

Decision boundary … what if \(k=1 \)?
K-Nearest Neighbors

Properties:
- No learning phase.
- Must store all the data.
- \(\log(n) \) computation per sample - grows with data.

Decision boundary:
- *any function, given enough data.*

Classic trade-off: memory and compute time for flexibility.
Applications

- Fraud detection
- Internet advertising
- Friend or link prediction
- Sentiment analysis
- Face recognition
- Spam filtering
Applications

MNIST Data Set
Training set: 60k digits
Test set: 10k digits
Classification vs. Regression

If the set of labels Y is discrete:
- **Classification**
- Minimize number of errors

If Y is real-valued:
- **Regression**
- Minimize sum squared error

Let’s look at regression.
Regression with Decision Trees

Start with decision trees with real-valued inputs.
Regression with Decision Trees

… now real-valued outputs.

```
a > 3.1
  true
    y=0.6
  false
    b < 0.6?
      true
        y=0.3
      false
        y=1.1
```
Regression with Decision Trees

Training procedure - fix a depth, k.

If you have $k=1$, fit the average.

If $k > 1$:
- Consider all variables to split on
- Find the one that minimizes SSE
- Recurse ($k-1$)

What happens if $k = N$?
Regression with Decision Trees

(via scikit-learn docs)
Linear Regression

Alternatively, explicit equation for prediction.

Recall the Perceptron.
If $x = [x(1), \ldots , x(n)]$:

- Create an n-d line
- Slope for each $x(i)$
- Constant offset

$$f(x) = \text{sign}(w \cdot x - c)$$
Linear Regression

Directly represent f as a linear function:

- $f(x, w) = w \cdot x + c$

What can be represented this way?
Linear Regression

How to train?

Given inputs:
• \(x = [x_1, \ldots, x_n] \) (each \(x_i \) is a vector, first element = 1)
• \(y = [y_1, \ldots, y_n] \) (each \(y_i \) is a real number)

Define error function:
Minimize summed squared error

\[
\sum_{i=1}^{n} (w \cdot x_i - y_i)^2
\]
Linear Regression

The usual story:
- Set derivative of error function to zero.

\[
\frac{d}{dw} \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 = 0 \\
2 \sum_{i=1}^{n} (w \cdot x_i - y_i) x_i^T = 0 \\
\left(\sum_{i=1}^{n} x_i^T x_i \right) w = \sum_{i=1}^{n} x_i^T y_i \\
w = A^{-1} \mathbf{b}
\]

\[\mathbf{A} = \left(\sum_{i=1}^{n} x_i^T x_i \right) \text{ matrix}\]

\[\mathbf{b} = \sum_{i=1}^{n} x_i^T y_i \text{ vector}\]
Polynomial Regression

More powerful:

- Polynomials in state variables.
- 1st order: \([1, x, y, xy]\)
- 2nd order: \([1, x, y, xy, x^2, y^2, x^2y, y^2x, x^2y^2]\)
- \(y_i = w \cdot \Phi(x_i)\)

What can be represented?
Polynomial Regression

As before ...

\[
\frac{d}{dw} \sum_{i=1}^{n} (w \cdot \Phi(x_i) - y_i)^2
\]

\[
w = A^{-1} b
\]

\[
A = \sum_{i=1}^{n} \Phi^T(x_i) \Phi(x_i)
\]

\[
b = \sum_{i=1}^{n} \Phi^T(x_i) y_i
\]
Polynomial Regression
Overfitting
Overfitting
Ridge Regression

A characteristic of overfitting:
- Very large weights.

Modify the objective function to discourage this:

$$\min \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda \|w\|$$

error term
regularization term

$$w = (A^T A + \Lambda^T \Lambda)^{-1} A^T b$$
Neural Network Regression

\[\sigma(w \cdot x + c) \]

classification
Neural Network Regression

Input layer:
- x_1
- x_2

Hidden layer:
- h_1
- h_2
- h_3

Output layer:
- o_1
- o_2
Neural Network Regression

$$w_1^{o1} h_1 + w_2^{o1} h_2 + w_3^{o1} h_3 + w_4^{o1}$$

value computed

$$w_1^{o2} h_1 + w_2^{o2} h_2 + w_3^{o2} h_3 + w_4^{o2}$$

$$h_1 = \sigma(w_1^{h1} x_1 + w_2^{h1} x_2 + w_3^{h1})$$

value computed

$$\sigma(w_1^{h2} x_1 + w_2^{h2} x_2 + w_3^{h2})$$

$$\sigma(w_1^{h3} x_1 + w_2^{h3} x_2 + w_3^{h3})$$

$$x_1, x_2 \in [0, 1]$$

input layer
Neural Network Regression

A neural network is just a parametrized function: \(y = f(x, w) \)

How to train it?

Write down an error function:

\[
(y_i - f(x_i, w))^2
\]

Minimize it! (w.r.t. \(w \))

No closed form solution to gradient = 0. Hence, stochastic gradient descent:

- Compute \(\frac{d}{dw} (y_i - f(x_i, w))^2 \)
- Descend
Image Colorization

(Zhang, Isola, Efros, 2016)
Nonparametric Regression

Most ML methods are parametric:
- Characterized by setting a few parameters.
- \(y = f(x, w) \)

Alternative approach:
- Let the data speak for itself.
- No finite-sized parameter vector.
- Usually more interesting decision boundaries.
Nonparametric Regression

What’s the regression equivalent of k-Nearest Neighbors?

Given training data:
- $X = \{x_1, \ldots, x_n\}$
- $Y = \{y_1, \ldots, y_n\}$
- Distance metric $D(x_i, x_j)$

For a new data point x_{new}:
- find k nearest points in X (measured via D)
- set y_{new} to the (weighted by D) average y_i labels
Nonparametric Regression

As k increases, f gets smoother.
Gaussian Processes
Applications

model and predict variations in pH, clay, and sand content in the topsoil

(Gonzalez et al., 2007)