Machine Learning

Subfield of AI concerned with *learning from data*.

Broadly, using:
- *Experience*
- *To Improve Performance*
- *On Some Task*

(Tom Mitchell, 1997)
Supervised Learning

Input:

\[X = \{x_1, \ldots, x_n\} \quad \text{inputs} \]
\[Y = \{y_1, \ldots, y_n\} \quad \text{labels} \]

Learn to predict new labels. Given \(x \): \(y ? \)
Supervised Learning

Formal definition:

Given training data:
\[X = \{x_1, \ldots, x_n\} \quad \text{inputs} \]
\[Y = \{y_1, \ldots, y_n\} \quad \text{labels} \]

Produce:
Decision function \(f : X \rightarrow Y \)

That minimizes error:
\[\sum_i err(f(x_i), y_i) \]
Nonparametric Methods

Most ML methods are parametric:
- Characterized by setting a few parameters.
- \(y = f(x, w) \)

Alternative approach:
- Let the data speak for itself.
- No finite-sized parameter vector.
- Usually more interesting decision boundaries.
K-Nearest Neighbors

Given training data:
\[X = \{x_1, \ldots, x_n\} \]
\[Y = \{y_1, \ldots, y_n\} \]

Distance metric \(D(x_i, x_j) \)

For a new data point \(x_{\text{new}} \):
find \(k \) nearest points in \(X \) (measured via \(D \))
set \(y_{\text{new}} \) is the majority label
K-Nearest Neighbors
K-Nearest Neighbors

Decision boundary … what if k=1?
K-Nearest Neighbors

Properties:

- No learning phase.
- Must store all the data.
- \(\log(n) \) computation per sample - grows with data.

Decision boundary:

- any function, given enough data.

Classic trade-off: memory and compute time for flexibility.
Classification vs. Regression

If the set of labels Y is discrete:
- Classification
- Minimize number of errors

If Y is real-valued:
- Regression
- Minimize sum squared error

Let’s look at regression.
Regression with Decision Trees

Start with decision trees with real-valued inputs.

\[
\begin{align*}
a &> 3.1 \\
\text{true} & \quad y = 1 \\
\text{false} & \quad \begin{align*}
b &< 0.6? \\
\text{true} & \quad y = 2 \\
\text{false} & \quad y = 1
\end{align*}
\end{align*}
\]
Regression with Decision Trees

... now real-valued outputs.
Regression with Decision Trees

Training procedure - fix a depth, k.

If you have $k=1$, fit the average.

If $k > 1$:
 Consider all variables to split on
 Find the one that minimizes SSE
 Recurse ($k-1$)

Choice of k prevents overfitting.
Regression with Decision Trees

Decision Tree Regression

- max_depth=2
- max_depth=5
- data

(via scikit-learn docs)
Linear Regression

Alternatively, explicit equation for prediction.

Recall the Perceptron.
If $x = [x(1), \ldots, x(n)]$:
- Create an n-d line
- Slope for each $x(i)$
- Constant offset

\[f(x) = \text{sign}(w \cdot x - c) \]
Linear Regression

Directly represent f as a linear function:

$\cdot f(x, w) = w \cdot x + c$

What can be represented this way?
Linear Regression

How to train?

Given inputs:
- \(x = [x_1, \ldots, x_n] \) (each \(x_i \) is a vector, first element = 1)
- \(y = [y_1, \ldots, y_n] \) (each \(y_i \) is a real number)

Define error function:
Minimize summed squared error

\[
\sum_{i=1}^{n} (w \cdot x_i - y_i)^2
\]
Linear Regression

The usual story:

- Set derivative of error function to zero.

\[
\frac{d}{dw} \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 = 0
\]

\[
2 \sum_{i=1}^{n} (w \cdot x_i - y_i) x_i^T = 0
\]

\[
\left(\sum_{i=1}^{n} x_i^T x_i \right) w = \sum_{i=1}^{n} x_i^T y_i
\]

\[
w = A^{-1}b
\]

\[A = \left(\sum_{i=1}^{n} x_i^T x_i \right)\]

\[b = \sum_{i=1}^{n} x_i^T y_i\]
Polynomial Regression

More powerful:

- Polynomials in state variables.
 - 1st order: \([1, x, y, xy]\)
 - 2nd order: \([1, x, y, xy, x^2, y^2, x^2y, y^2x, x^2y^2]\)
- \(y_i = w \cdot \Phi(x_i)\)

What can be represented?
Polynomial Regression

As before …

\[
\frac{d}{dw} \sum_{i=1}^{n} (w \cdot \Phi(x_i) - y_i)^2
\]

\[
w = A^{-1}b
\]

\[
A = \sum_{i=1}^{n} \Phi^T(x_i)\Phi(x_i)
\]

\[
b = \sum_{i=1}^{n} \Phi^T(x_i)y_i
\]
Polynomial Regression
Overfitting
Overfitting
Ridge Regression

A characteristic of overfitting:
- Very large weights.

Modify the objective function to discourage this:

$$\min \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda \|w\|$$

- error term
- regularization term

$$w = (A^T A + \Lambda^T \Lambda)^{-1} A^T b$$
Neural Network Regression

\[\sigma(w \cdot x + c) \]

classification
Neural Network Regression

- **Input layer**: x_1, x_2
- **Hidden layer**: h_1, h_2, h_3
- **Output layer**: o_1, o_2
Neural Network Regression

\[w_{o1}^1 h_1 + w_{o1}^2 h_2 + w_{o1}^3 h_3 + w_{o1}^4 \]

value computed

\[h_1 = \sigma(h_1^1 x_1 + h_1^2 x_2 + h_1^3) \]

feed forward

\[w_{o2}^1 h_1 + w_{o2}^2 h_2 + w_{o2}^3 h_3 + w_{o2}^4 \]

value computed

\[h_2 = \sigma(h_2^1 x_1 + h_2^2 x_2 + h_2^3) \]

\[h_3 = \sigma(h_3^1 x_1 + h_3^2 x_2 + h_3^3) \]

input layer

\[x_1, x_2 \in [0, 1] \]
Neural Network Regression

A neural network is just a parametrized function: \(y = f(x, w) \)

How to *train* it?

Write down an error function:

\[
(y_i - f(x_i, w))^2
\]

Minimize it! (w.r.t. \(w \))

No closed form solution to gradient = 0. Hence, stochastic gradient descent:

- **Compute** \(\frac{d}{dw} (y_i - f(x_i, w))^2 \)
- **Descend**
Image Colorization

(Zhang, Isola, Efros, 2016)
Nonparametric Regression

Most ML methods are parametric:
- Characterized by setting a few parameters.
 \[y = f(x, w) \]

Alternative approach:
- Let the data speak for itself.
- No finite-sized parameter vector.
- Usually more interesting decision boundaries.
Nonparametric Regression

What’s the regression equivalent of k-means?

Given training data:
\[X = \{x_1, \ldots, x_n\} \]
\[Y = \{y_1, \ldots, y_n\} \]
Distance metric \(D(x_i, x_j) \)

For a new data point \(x_{new} \):
- find \(k \) nearest points in \(X \) (measured via \(D \))
- set \(y_{new} \) to the (weighted by \(D \)) average \(y_i \) labels
Nonparametric Regression

As k increases, f gets smoother.
Gaussian Processes
Applications

model and predict variations in pH, clay, and sand content in the topsoil

(Gonzalez et al., 2007)