Reinforcement Learning

\[\pi : S \rightarrow A \]

\[\max_{\pi} R = \sum_{t=0}^{\infty} \gamma^t r_t \]
MDPs

Agent interacts with an environment
At each time t:
- Receives sensor signal s_t
- Executes action a_t
- Transition:
 - new sensor signal s_{t+1}
 - reward r_t

Goal: find policy π that maximizes expected return (sum of discounted future rewards):

$$\max_{\pi} \mathbb{E} \left[R = \sum_{t=0}^{\infty} \gamma^t r_t \right]$$
Markov Decision Processes

\(S \): set of states
\(A \): set of actions
\(\gamma \): discount factor

\(< S, A, \gamma, R, T >\)

\(R \): reward function
 \(R(s, a, s') \) is the reward received taking action \(a \) from state \(s \) and transitioning to state \(s' \).

\(T \): transition function
 \(T(s' \mid s, a) \) is the probability of transitioning to state \(s' \) after taking action \(a \) in state \(s \).

RL: one or both of \(T, R \) unknown.
The World
Real-Valued States

What if the states are real-valued?

- Cannot use table to represent Q.
- States may never repeat: must generalize.
Example:

States: $(\theta_1, \dot{\theta}_1, \theta_2, \dot{\theta}_2)$ (real-valued vector)

Actions: +1, -1, 0 units of torque added to elbow

Transition function: physics!

Reward function: -1 for every step
Value Function Approximation

Represent Q function:

$$Q(s, a, w) : \mathbb{R}^n \rightarrow \mathbb{R}$$

Samples of form:

$$(s_i, a_i, r_i, s_{i+1}, a_{i+1})$$

Minimize summed squared TD error:

$$\min_w \sum_{i=0}^{n} (r_i + \gamma Q(s_{i+1}, a_{i+1}, w) - Q(s_i, a_i, w))^2$$
Value Function Approximation

Given a function approximator, compute the gradient and descend it.

Which function approximator to use?

Simplest thing you can do:

- **Linear value function approximation.**
- Use set of basis functions ϕ_1, \ldots, ϕ_n
- Q is a linear function of them:

$$\hat{Q}(s, a) = w \cdot \Phi(s, a) = \sum_{j=1}^{n} w_j \phi_j(s, a)$$
Function Approximation

One choice of basis functions:

- Just use state variables directly: $[1, x, y]$

What can be represented this way?
Polynomial Basis

More powerful:

- Polynomials in state variables.
- 1st order: $[1, x, y, xy]$
- 2nd order: $[1, x, y, xy, x^2, y^2, x^2y, y^2x, x^2y^2]$
- This is like a Taylor expansion.

What can be represented?
Function Approximation

How to get the terms of the Taylor series?

Each term has an exponent:

\[\phi_c(x, y, z) = x^{c_1} y^{c_2} z^{c_3} \]

\[c_i \in [0, \ldots, d] \]

all combinations generates basis

\[\phi_c(x, y, z) = x = x^1 y^0 z^0 \quad c = [1, 0, 0] \]

\[\phi_c(x, y, z) = xy^2 = x^1 y^2 z^0 \quad c = [1, 2, 0] \]

\[\phi_c(x, y, z) = x^2 z^4 = x^2 y^0 z^4 \quad c = [2, 0, 4] \]

\[\phi_c(x, y, z) = y^3 z^1 = x^0 y^3 z^1 \quad c = [0, 3, 1] \]
Function Approximation

Another:

- Fourier terms on state variables.
- \([1, \cos(\pi x), \cos(\pi y), \cos(\pi [x + y])]\)
- \(\cos(\pi c \cdot [x, y, z])\)
Objective Function Minimization

First, let’s do **stochastic gradient descent**.

As each data point (transition) comes in

- compute gradient of objective w.r.t. data point
- descend gradient a little bit

\[
\hat{Q}(s, a) = w \cdot \Phi(s, a)
\]

\[
\min_w \sum_{i=0}^{n} (r_i + \gamma w \cdot \phi(s_{i+1}, a_{i+1}) - w \cdot \phi(s_i, a_i))^2
\]
Gradient

For each weight w_j:

$$\frac{\partial}{\partial w_j} \sum_{i=0}^{n} \left(r_i + \gamma w \cdot \phi(s_{i+1}, a_{i+1}) - w \cdot \phi(s_i, a_i) \right)^2$$

$$= -2 \sum_{i=0}^{n} \left(r_i + \gamma w \cdot \phi(s_{i+1}, a_{i+1}) - w \cdot \phi(s_i, a_i) \right) \phi_j(s_i, a_i)$$

so for time i the contribution for weight w_j is:

$$\frac{\partial}{\partial w_j} \sum_{i=0}^{n} \left(r_i + \gamma w \cdot \phi(s_{i+1}, a_{i+1}) - w \cdot \phi(s_i, a_i) \right)^2 \phi_j(s_i, a_i)$$

make a step:

$$w_{j,i+1} = w_{j,i} + \alpha \left(r_i + \gamma w \cdot \phi(s_{i+1}, a_{i+1}) - w \cdot \phi(s_i, a_i) \right) \phi_j(s_i, a_i)$$

$$w_{i+1} = w_i + \alpha \partial \phi(s_i, a_i)$$ vector
\[w_{i+1} = w_i + \alpha \delta \phi(s_i, a_i) \]

becomes

\[w_{i+1} = w_i + \alpha \delta e \]

where

\[e_t = \gamma e_{t-1} + \phi(s_t, a_t) \]

\[e_0 = \bar{0} \]

[Sutton and Barto, 1998]
Acrobot

Episode: 1
Acrobot

Sarsa(λ) using the Fourier Basis: Acrobot

Steps to Goal vs. Episode

- Fourier O(5)
- Fourier O(7)
Least-Squares TD

Minimize:

$$\min_w \sum_{i=0}^{n} (r_i + \gamma w \cdot \phi(s_{i+1}, a_{i+1}) - w \cdot \phi(s_i, a_i))^2$$

Error function has a bowl shape, so unique minimum. Just go right there!
Least-Squares TD

Derivative set to zero:

\[
\sum_{i=1}^{n} (w \cdot \phi(s_i, a_i) - r_i - \gamma w \cdot \phi(s_{i+1}, a_{i+1})) \phi(s_i, a_i)^T = 0
\]

\[
w^T \sum_{i=1}^{n} (w \cdot \phi(s_i, a_i) - \gamma w \cdot \phi(s_{i+1}, a_{i+1})) \phi^T(s_i, a_i) = \sum_{i=1}^{n} r_i \phi^T(s_i, a_i)
\]

\[
w = A^{-1} b
\]

A = \sum_{i=1}^{n} (\phi(s_i, a_i) - \gamma \phi(s_{i+1}, a_{i+1})) \phi^T(s_i, a_i)

b = \sum_{i=1}^{n} r_i \phi^T(s_i, a_i)

[Bradtke and Barto, 1996]
LSTD(\(\lambda\))

Can derive the least-squares version of LSTD(\(\lambda\)) in this way. Try it at home!

- Write down the objective function …
- Sample \(r_i\) replaced by complex reward estimate.
- You will get a trace vector if you do some clever algebra.
- Trace vector is the same size as \(w\).

[Boyan, 1999]
LSTD(\(\lambda\))

One inversion solves for \(w\)!

But:

- Computationally expensive.
- \(A\) may not be invert-able.
- Least-squares behavior sometimes unstable outside of data.

- LSPI: Least Squares Policy Iteration
- Requires recomputing \(A\) over historical data.
 - \(a_{i+1}\) changes with the policy

[Lagoudakis and Parr, 2003]
Linear Methods Don’t Scale

Why not?
• They’re complete.
• They have nice properties (bowl-shaped error).
• They are easy to use!

How many basis functions in a complete nth order Taylor series of d variables?

$$(n + 1)^d$$
Function Approximation

- At or near best human level
- Learn to play Backgammon through self-play
- 1.5 million games
- Neural network function approximator
- TD(\(\lambda\))

Changed the way the best human players played.

Figure 3. A complex situation where TD-Gammon’s positional judgment is apparently superior to traditional expert thinking. White is to play 4-4. The obvious human play is 8-4*, 8-4, 11-7, 11-7. (The asterisk denotes that an opponent checker has been hit.) However, TD-Gammon’s choice is the surprising 6-4*, 8-4, 21-17, 21-17! TD-Gammon’s analysis of the two plays is given in Table 3.
Arcade Learning Environment

[Bellemare 2013]
Deep Q-Networks

[Mnih et al., 2015]
Atari

Starting out - 10 minutes of training

The algorithm tries to hit the ball back, but it is yet too clumsy to manage.

[Mnih et al., 2015] video: Two Minute Papers
Atari

[Mnih et al., 2015]
POLICY SEARCH
Policy Search

Represent policy directly:

$$\pi(s, a, \theta) : \mathbb{R}^n, \mathbb{R}^m \rightarrow [0, 1]$$

Objective function:

$$\max_\theta \mathbb{E} \left[R = \sum_{i=0}^{\infty} \gamma^i r_i \right]$$

Why?
Policy Search

So far: improve policy via value function.

- Sometimes policies are simpler than value functions:
 - Parametrized program $\pi(s, a|\theta)$

Sometimes we wish to search in space of restricted policies.

In such cases it makes sense to search directly in policy-space rather than trying to learn a value function.
Hill Climbing

What if you can’t differentiate π?

Sample-based optimization:
- Sample some θ values near your current best θ.
- Adjust your current best to the highest value θ.
Aibo Gait Optimization
from Kohl and Stone, ICRA 2004.

All told, the following set of 12 parameters define the Aibo’s gait [10]:
- The front locus (3 parameters: height, x-pos., y-pos.)
- The rear locus (3 parameters)
- Locus length
- Locus skew multiplier in the x-y plane (for turning)
- The height of the front of the body
- The height of the rear of the body
- The time each foot takes to move through its locus
- The fraction of time each foot spends on the ground
PoWER and PI2

More recently, two closely related algorithms:

- Generate some sample θ values.
- Next θ is sum of prior samples weighted by reward.

(Theodorou and Schaal 2010, Kober and Peters 2011)
Policy Search

What if we can differentiate π with respect to θ?

Policy gradient methods.

- Compute and ascend $\frac{\partial R}{\partial \theta}$
- This is the gradient of return w.r.t policy parameters

Policy gradient theorem:

$$\frac{\partial R}{\partial \theta} = \sum_s d^\pi(s) \sum_a \frac{\partial \pi(s, a)}{\partial \theta} (Q^\pi(s, a) - b(s))$$

Therefore, one way is to learn Q and then ascend gradient. Q need only be defined using basis functions computed from θ.
Postural Recovery

Learning Dynamic Arm Motions for Postural Recovery

Scott Kuindersma, Rod Grupen, Andy Barto
University of Massachusetts Amherst

Humanoids 2011
Bled, Slovenia
Deep Policy Search

Figure 1: Our method learns visuomotor policies that directly use camera image observations (left) to set motor torques on a PR2 robot (right).

[Levine et al., 2016]
Deep Policy Search

[Levine et al., 2016]
Robotics

Learned Visuomotor Policy: Shape sorting cube

[Levine et al., 2016]
Reinforcement Learning

Very active area of current research, applications in:

- Robotics
- Operations Research
- Computer Games
- Theoretical Neuroscience

AI

- The primary function of the brain is control.