Probabilistic Planning

George Konidaris
gdk@cs.brown.edu

Fall 2019
The Planning Problem

Finding a sequence of actions to achieve some goal.
Plans

It’s great when a plan just works …

… but the world doesn’t work like that.

To plan effectively we must take uncertainty seriously.
Probabilistic Planning

As before:

• Generalize deterministic logic to probabilities.
• Generalize deterministic planning to probabilistic planning.

This results in a harder planning problem.

In particular:

• Must model stochasticity.
• Plans can fail.
• Can no longer compute straight-line plans.
Stochastic Outcomes

\[s' = T(s, a) \]
\[C(s, a, s') \]

probability distribution over transitions: \(T(s' | s, a) \)
\[R(s, a, s') \]
Probabilistic Planning

Recall - systems that change over time:

- \textit{Problem has a state}.
- State has the Markov property.

\[P(S_t|S_{t-1}, a_{t-1}, S_{t-2}, a_{t-2}, \ldots, S_0, a_0) = P(S_t|S_{t-1}, a_{t-1}) \]

\textbf{controlled process}

\begin{itemize}
 \item only the previous state
 \item but also the previous action
\end{itemize}
The Markov Property

Needs to be extended for planning:
- s_{t+1} depends only on s_t and a_t
- r_t depends only on s_t, a_t, and s_{t+1}

Current state is a sufficient statistic of agent’s history.

This means that:
- Decision-making depends only on current state
- The agent does not need to remember its history
Probabilistic Planning

Markov Decision Processes (MDPs):

• *The* canonical decision making formulation.
• Problem has a set of states.
• Agent has available actions.

• Actions cause stochastic *transitions*.
• Transitions have *costs/rewards*.
 • Transitions, costs depend *only on previous state*.

• Agent must choose actions to maximize reward (minimize costs) *summed over time*.
Markov Decision Processes

S: set of states
A: set of actions
γ: discount factor

$< S, A, \gamma, R, T >$

R: reward function
$R(s, a, s')$ is the reward received taking action a from state s and transitioning to state s'.

T: transition function
$T(s' | s, a)$ is the probability of transitioning to state s' after taking action a in state s.
MDPs

Goal: choose actions to **maximizes** return: expected sum of discounted rewards.

\[R^\pi(s) = \mathbb{E} \left[\sum_{i=0}^{\infty} \gamma^i r_i \right] \]

(equiv: min sum of costs)
due to stochasticity
all future rewards
now matters more
rewards summed
Why Summed Rewards?
Episodic Problems

Some problems end when you hit a particular state.

Model: transition to absorbing state.
In practice: reset the problem.
Example

States: set of grid locations
Actions: up, down, left, right
Transition function: move in direction of action with $p=0.9$
Reward function: -1 for every step, 1000 for (absorbing) goal
Back to PDDL

MDPs do not contain the structure of PDDL.

• PPDDL: probabilistic planning domain definition language

Now operators have probabilistic outcomes:

(:action move_left
 :parameters (x, y)
 :precondition (not (wall(x-1, y)))
 :effect (probabilistic
 0.8 (and (at(x-1)) (not at(x)) (decrease (reward) 1))
 0.2 (and (at(x+1)) (not(at(x))(decrease (reward) 1)))
)
)
Example

0.8

$r = -2$

0.2

$r = -5$
Our goal is to find a policy:

$$\pi : S \rightarrow A$$

... that maximizes return: expected sum of rewards. (equiv: min sum of costs)

$$R^\pi (s) = \mathbb{E} \left[\sum_{i=0}^{\infty} \gamma^i r_i \right]$$
Policies and Plans

Compare a policy:
 • An action for every state.

... with a plan:
 • A sequence of actions.

Why the difference?
Planning

So our goal is to produce optimal policy.

\[\pi^*(s) = \max_{\pi} R^\pi(s) \]

Note: we know \(T \) and \(R \).

Useful fact: such a policy always exists.
(But there might be more than one.)
Planning

The key quantity is the return given by a policy from a state:

\[R^\pi (s) \]

Define the value function to estimate this quantity:

\[V^\pi (s) = \mathbb{E} \left[\sum_{i=0}^{\infty} \gamma^i r_i \right] \]
Value Functions

V is a useful thing to know. Maybe we can use it to improve π.
How to find V?
Monte Carlo

Simplest thing you can do: sample $R(s)$.

\[R = \sum \gamma^i r_i \]

Do this repeatedly, average:

\[V^\pi(s) = \frac{R_1(s) + R_2(s) + \ldots + R_n(s)}{n} \]
Monte Carlo Estimation

One approach:

- For each state s
- Repeat many times:
 - Start at s
 - Run policy forward until absorbing state (or $\gamma^t < \epsilon$)
 - Write down discount sum of rewards received
 - This is a sample of $V(s)$
 - Average these samples

This always works!

But very high variance. Why?
Monte Carlo Estimation

\[R = r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 r_3 + \ldots + \gamma^n r_n \]
Doing Better

We need an estimate of R that doesn’t grow in variance as the episode length increases.

Might there be some relationship between values that we can use as an extra source of information?

\[
R(s_0) = r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 r_3 + \ldots + \gamma^n r_n
\]

\[
R(s_1) = \gamma^0 r_1 + \gamma^1 r_2 + \gamma^2 r_3 + \ldots + \gamma^{n-1} r_n
\]
Bellman’s equation is a condition that must hold for V:

$$V^\pi(s) = \mathbb{E}_{s'} \left[r(s, \pi(s), s') + \gamma V^\pi(s') \right]$$

- **Value of this state**
- **Reward**
- **Value of next state**
Dynamic Programming

We can use this expression to update V:

$$V^\pi(s) \leftarrow \sum_{s'} [T(s'|s, \pi(s)) \times (r(s, \pi(s), s') + \gamma V^\pi(s'))]$$

This algorithm is called dynamic programming
Value Iteration

This gives us an algorithm for computing the value function for a specific given fixed policy:

Repeat:
 • Make a copy of the VF.
 • For each state in VF, assign value using BE.
 • Replace old VF.

This is known as value iteration.
Value Iteration

\(V[s] = 0, \forall s \)

do:

\(V_{old} = \text{copy}(V) \)

for each state \(s \):

\[
V[s] = \sum_{s'} T(s, \pi(s), s') [r(s, \pi(s), s') + \gamma V_{old}[s']]
\]

until \(V \) converges.

Notes:

• Fixed policy \(\pi \).
• \(V[s'] = 0 \), definitionally, if \(s \) is absorbing.
Policy Iteration

Recall that we seek the policy that maximizes \(V^\pi(s), \forall s. \)

Therefore we know that, for the optimal policy \(\pi^* \):

\[
V^{\pi^*}(s) \geq V^\pi(s), \forall \pi, s
\]

This means that any change to \(\pi \) that increases \(V^\pi \) anywhere obtains a better policy.
This leads to a general policy improvement framework:

1. Start with a policy π
2. **Estimate** V^π
3. Improve π
 a. $\pi(s) = \max_a \mathbb{E} [r + \gamma V^\pi(s')]$, $\forall s$

This is known as **policy iteration**.
It is guaranteed to converge to the optimal policy.

Steps 2 and 3 can be interleaved as rapidly as you like.
Policy Iteration

\(V[s] = 0, \forall s \)

do:
 \(V_{old} = \text{copy}(V) \)
 for each state \(s \):
 \[
 V[s] = \sum_{s'} T(s, \pi(s), s') \left[r(s, \pi(s), s') + \gamma V_{old}[s'] \right]
 \]
 for each state \(s \):
 \[
 \pi(s) = \text{argmax}_a \sum_{s'} T(s, a, s') \left[r(s, a, s') + \gamma V[s'] \right]
 \]
while \(\pi \) changes.

Finds an optimal policy in time polynomial in \(|S| \) and \(|A| \).
(There are \(|A|^{|S|} \) possible policies.)
Policy Iteration
Improvements

Extensions to the basic algorithm largely deal with controlling the size of the *state sweeps*:

- Not all states are reachable.
- Not all states need to be updated at each iteration.
- Not all states are likely to be encountered from a start state.

DP algorithms can solve problems with millions of states.
Elevator Scheduling

Crites and Barto (1985):
• System with 4 elevators, 10 floors.
• Realistic simulator.
• 46 dimensional state space.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>AvgWait</th>
<th>SquaredWait</th>
<th>SystemTime</th>
<th>Percent >60 secs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTOR</td>
<td>30.3</td>
<td>1643</td>
<td>59.5</td>
<td>13.50</td>
</tr>
<tr>
<td>HUFF</td>
<td>22.8</td>
<td>884</td>
<td>55.3</td>
<td>5.10</td>
</tr>
<tr>
<td>DLB</td>
<td>22.6</td>
<td>880</td>
<td>55.8</td>
<td>5.18</td>
</tr>
<tr>
<td>LQF</td>
<td>23.5</td>
<td>877</td>
<td>53.5</td>
<td>4.92</td>
</tr>
<tr>
<td>BASIC HUFF</td>
<td>23.2</td>
<td>875</td>
<td>54.7</td>
<td>4.94</td>
</tr>
<tr>
<td>FIM</td>
<td>20.8</td>
<td>685</td>
<td>53.4</td>
<td>3.10</td>
</tr>
<tr>
<td>ESA</td>
<td>20.1</td>
<td>667</td>
<td>52.3</td>
<td>3.12</td>
</tr>
<tr>
<td>RLd</td>
<td>18.8</td>
<td>593</td>
<td>45.4</td>
<td>2.40</td>
</tr>
<tr>
<td>RLP</td>
<td>18.6</td>
<td>585</td>
<td>45.7</td>
<td>2.49</td>
</tr>
</tbody>
</table>
MicroMAP

“Drivers and Loads” (trucking), CASTLE lab at Princeton

“the model was used by 20 of the largest truckload carriers to dispatch over 66,000 drivers”