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CS 138: Self-Stabilizing Systems 
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Token Ring 
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Token Ring Problem (1) 
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Token Ring Problem (2) 
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Enter Dijkstra 
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Self-Stabilizing Systems 

•  A distributed system has a set of legal states 
•  Suppose it’s zapped by some outside force 

and enters an illegal state 

•  Can it be constructed so that it is guaranteed 
to return to a legal state in a bounded amount 
of time? 
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Notation, etc. 

•  Guarded commands 
guard → command 

-  execute command when guard is true 
•  Token ring 

– node.state 
-  integer state of node 

– node.next 
-  next node (clockwise) 

– node. prev 
-  previous node (counter clockwise) 
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Solution 

•  N nodes, each with k states, k > N 
•  Special distinguished node 

(node.prev.state == node.state) → 
node.state++(mod k) 

•  All other nodes 
(node.prev.state != node.state) → 

node.state = node.prev.state 

•  Legal system states 
– exactly one guard is true 
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Example (1) 
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Example (2) 
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Example (3) 
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Example (4) 
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Example (5) 

0 

1 

1 

1 1 



 CS 138 XXII–14 Copyright © 2016 Thomas W. Doeppner. All rights reserved. 

Example (6) 
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Example (7) 
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Example (8) 
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Example (9) 
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Example (10) 
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Example (11) 
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Example (12) 
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Example (13) 
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Example (14) 
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Also … 

•  Gave solutions with 4-state machines and 3-
state machines 

•  Someone later proved that it cannot be done 
with 2-state machines 
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Proof 

•  Dijsktra didn’t bother … 
•  It’s up to us 
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Proof (1) 

•  Explain why it is that at any particular 
moment, at least one guard must be true, 
even if the system has been zapped 

•  Special distinguished node 
(node.prev.state == node.state) → 

node.state++(mod k) 
•  All other nodes 

(node.prev.state != node.state) → 
node.state = node.prev.state 
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Proof (2) 

•  Show that if all nodes have the same value for 
their states, the system is stable 

–  stable: the system is in a state in which only one 
node’s guard is true; whenever the system changes 
global state legally, it goes to a global state in 
which the next node’s guard is the only one that’s 
true 

•  Special distinguished node 
(node.prev.state == node.state) → 

node.state++(mod k) 
•  All other nodes 

(node.prev.state != node.state) → 
node.state = node.prev.state 
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Proof (3) 

•  Show that if node 0’s state is greater than 
those of all other nodes, the system will 
necessarily reach a stable global state. 

•  Special distinguished node 
(node.prev.state == node.state) → 

node.state++(mod k) 
•  All other nodes 

(node.prev.state != node.state) → 
node.state = node.prev.state 
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Proof (4) 

•  Assume now that each node’s state value is 
an unbounded non-negative integer (i.e., k is 
infinite). Show that, regardless of its current 
state, the system will necessarily reach a 
global state in which node 0’s state is greater 
than those of all others. 

•  Special distinguished node 
(node.prev.state == node.state) → 

node.state++(mod k) 
•  All other nodes 

(node.prev.state != node.state) → 
node.state = node.prev.state 
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Proof (5) 

•  Redo part 4, this time assuming k>=n: the 
system will necessarily reach a global state in 
which node 0’s state is greater than those of 
all others   

•  Special distinguished node 
(node.prev.state == node.state) → 

node.state++(mod k) 
•  All other nodes 

(node.prev.state != node.state) → 
node.state = node.prev.state 
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Proof (6) 

•  Show that the system won’t necessarily ever 
enter a stable state after being zapped if k<n 

•  Special distinguished node 
(node.prev.state == node.state) → 

node.state++(mod k) 
•  All other nodes 

(node.prev.state != node.state) → 
node.state = node.prev.state 


