
 CS 138 XXII–1 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

CS 138: Self-Stabilizing Systems

 CS 138 XXII–2 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Token Ring

 CS 138 XXII–3 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Token Ring Problem (1)

 CS 138 XXII–4 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Token Ring Problem (2)

 CS 138 XXII–5 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Enter Dijkstra

 CS 138 XXII–6 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Self-Stabilizing Systems

•  A distributed system has a set of legal states
•  Suppose it’s zapped by some outside force

and enters an illegal state

•  Can it be constructed so that it is guaranteed
to return to a legal state in a bounded amount
of time?

 CS 138 XXII–7 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Notation, etc.

•  Guarded commands
guard → command

-  execute command when guard is true
•  Token ring

– node.state
-  integer state of node

– node.next
-  next node (clockwise)

– node. prev
-  previous node (counter clockwise)

 CS 138 XXII–8 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Solution

•  N nodes, each with k states, k > N
•  Special distinguished node

(node.prev.state == node.state) →
node.state++(mod k)

•  All other nodes
(node.prev.state != node.state) →

node.state = node.prev.state

•  Legal system states
– exactly one guard is true

 CS 138 XXII–9 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Example (1)

0

0

0

0 0

 CS 138 XXII–10 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Example (2)

0

1

0

0 0

 CS 138 XXII–11 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Example (3)

0

1

1

0 0

 CS 138 XXII–12 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Example (4)

0

1

1

0 1

 CS 138 XXII–13 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Example (5)

0

1

1

1 1

 CS 138 XXII–14 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Example (6)

1

1

1

1 1

 CS 138 XXII–15 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Example (7)

1

2

1

1 1

 CS 138 XXII–16 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Example (8)

1

2

1

1 1

 CS 138 XXII–17 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Example (9)

0

2

4

3 1

 CS 138 XXII–18 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Example (10)

0

2

2

3 1

 CS 138 XXII–19 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Example (11)

0

2

2

3 2

 CS 138 XXII–20 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Example (12)

0

2

2

2 2

 CS 138 XXII–21 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Example (13)

2

2

2

2 2

 CS 138 XXII–22 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Example (14)

2

3

2

2 2

 CS 138 XXII–23 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Also …

•  Gave solutions with 4-state machines and 3-
state machines

•  Someone later proved that it cannot be done
with 2-state machines

 CS 138 XXII–24 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Proof

•  Dijsktra didn’t bother …
•  It’s up to us

 CS 138 XXII–25 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Proof (1)

•  Explain why it is that at any particular
moment, at least one guard must be true,
even if the system has been zapped

•  Special distinguished node
(node.prev.state == node.state) →

node.state++(mod k)
•  All other nodes

(node.prev.state != node.state) →
node.state = node.prev.state

 CS 138 XXII–26 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Proof (2)

•  Show that if all nodes have the same value for
their states, the system is stable

–  stable: the system is in a state in which only one
node’s guard is true; whenever the system changes
global state legally, it goes to a global state in
which the next node’s guard is the only one that’s
true

•  Special distinguished node
(node.prev.state == node.state) →

node.state++(mod k)
•  All other nodes

(node.prev.state != node.state) →
node.state = node.prev.state

 CS 138 XXII–27 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Proof (3)

•  Show that if node 0’s state is greater than
those of all other nodes, the system will
necessarily reach a stable global state.

•  Special distinguished node
(node.prev.state == node.state) →

node.state++(mod k)
•  All other nodes

(node.prev.state != node.state) →
node.state = node.prev.state

 CS 138 XXII–28 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Proof (4)

•  Assume now that each node’s state value is
an unbounded non-negative integer (i.e., k is
infinite). Show that, regardless of its current
state, the system will necessarily reach a
global state in which node 0’s state is greater
than those of all others.

•  Special distinguished node
(node.prev.state == node.state) →

node.state++(mod k)
•  All other nodes

(node.prev.state != node.state) →
node.state = node.prev.state

 CS 138 XXII–29 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Proof (5)

•  Redo part 4, this time assuming k>=n: the
system will necessarily reach a global state in
which node 0’s state is greater than those of
all others

•  Special distinguished node
(node.prev.state == node.state) →

node.state++(mod k)
•  All other nodes

(node.prev.state != node.state) →
node.state = node.prev.state

 CS 138 XXII–30 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Proof (6)

•  Show that the system won’t necessarily ever
enter a stable state after being zapped if k<n

•  Special distinguished node
(node.prev.state == node.state) →

node.state++(mod k)
•  All other nodes

(node.prev.state != node.state) →
node.state = node.prev.state

