CS 138: Self-Stabilizing Systems
Token Ring
Token Ring Problem (1)
Token Ring Problem (2)
Enter Dijkstra
Self-Stabilizing Systems

- A distributed system has a set of legal states
- Suppose it’s zapped by some outside force and enters an illegal state

- Can it be constructed so that it is guaranteed to return to a legal state in a bounded amount of time?
Notation, etc.

- Guarded commands

guard \rightarrow command
 - execute command when guard is true

- Token ring
 - node.state
 - integer state of node
 - node.next
 - next node (clockwise)
 - node.prev
 - previous node (counter clockwise)
Solution

• N nodes, each with k states, k > N
• Special distinguished node
 \[(\text{node.prev.state} == \text{node.state}) \rightarrow \text{node.state} \mod k\]
• All other nodes
 \[(\text{node.prev.state} \neq \text{node.state}) \rightarrow \text{node.state} = \text{node.prev.state}\]
• Legal system states
 – exactly one guard is true
Example (1)
Example (2)

```
0 → 1 → 0 → 0 → 0
```
Example (4)
Example (5)
Example (6)
Example (7)
Example (9)
Example (10)
Example (11)
Example (12)
Example (13)
Also …

- Gave solutions with 4-state machines and 3-state machines
- Someone later proved that it cannot be done with 2-state machines
Proof

- Dijsktra didn’t bother …
- It’s up to us
Proof (1)

• Explain why it is that at any particular moment, at least one guard must be true, even if the system has been zapped

 • Special distinguished node

 \((\text{node.prev.state} == \text{node.state}) \rightarrow \text{node.state++(mod k)}\)

 • All other nodes

 \((\text{node.prev.state} != \text{node.state}) \rightarrow \text{node.state} = \text{node.prev.state}\)
Proof (2)

• Show that if all nodes have the same value for their states, the system is stable

 – stable: the system is in a state in which only one node’s guard is true; whenever the system changes global state legally, it goes to a global state in which the next node’s guard is the only one that’s true

 • Special distinguished node
 \[(\text{node.prev.state} == \text{node.state}) \rightarrow \text{node.state}++(\mod k)\]

 • All other nodes
 \[(\text{node.prev.state} != \text{node.state}) \rightarrow \text{node.state} = \text{node.prev.state}\]
Proof (3)

• Show that if node 0’s state is greater than those of all other nodes, the system will necessarily reach a stable global state.

• Special distinguished node
 \[(\text{node.prev.state} == \text{node.state}) \rightarrow \text{node.state}++(\text{mod } k)\]

• All other nodes
 \[(\text{node.prev.state} != \text{node.state}) \rightarrow \text{node.state} = \text{node.prev.state}\]
Proof (4)

• Assume now that each node’s state value is an unbounded non-negative integer (i.e., k is infinite). Show that, regardless of its current state, the system will necessarily reach a global state in which node 0’s state is greater than those of all others.

• Special distinguished node

 $(\text{node.prev.state} == \text{node.state}) \rightarrow \text{node.state}++(\text{mod } k)$

• All other nodes

 $(\text{node.prev.state} != \text{node.state}) \rightarrow \text{node.state} = \text{node.prev.state}$
Proof (5)

- Redo part 4, this time assuming \(k \geq n \): the system will necessarily reach a global state in which node 0’s state is greater than those of all others

- Special distinguished node

 \((\text{node.prev.state} == \text{node.state}) \rightarrow \text{node.state}++(\text{mod } \text{k}) \)

- All other nodes

 \((\text{node.prev.state} != \text{node.state}) \rightarrow \text{node.state} = \text{node.prev.state} \)
Proof (6)

• Show that the system won’t necessarily ever enter a stable state after being zapped if \(k < n \)

• Special distinguished node

 \[
 (\text{node.prev.state} == \text{node.state}) \rightarrow \text{node.state}++(\text{mod } k)
 \]

• All other nodes

 \[
 (\text{node.prev.state} \neq \text{node.state}) \rightarrow \text{node.state} = \text{node.prev.state}
 \]