




What happens if the token disappears? 



What if extra tokens spontaneously appear? 



Among his many contributions, Edsger W. Dijkstra wrote a seminal paper on “Self-
stabilizing Systems in Spite of Distributed Control.”  It was all of two pages long (1.75, to be 
precise) and appeared in Communications of the ACM, Vol. 17, No. 11 (November 1974). One 
of the journal’s editors supplied a comment on the paper: “the appreciation is left as an 
exercise to the reader.” 





















At this point, the system has finally achieved a legal state. 



Now a machine gets zapped … 













Once again, a legal state is reached. 







Either all nodes have the same state or there are at least two nodes with different states. If 
the former, then node 0’s guard is true. If the latter, then there must be at least two nodes 
whose states are different from their predecessors. At least one of these nodes is not the 
distinguished node, and thus its guard is true. 



In this global state, only node 0’s guard is true. Once its command is executed, its state 
becomes one greater (mod k) and its guard is no longer true, but its successor’s guard is now 
true, and no other guards are true. Once this node’s command is executed, its state is 
replaced with its predecessor’s state and its guard is no longer true (and no other guards are 
true). This continues around the ring until we are back to node 0. At this point, all states 
again have equal values, and thus only node 0’s guard is true. 



In such a global state, node 0’s guard is false, but its successor’s guard is true. Regardless 
of what else happens in the system, this condition will hold until the successor executes its 
command. At that point, its state becomes equal to that of node 0 and its guard becomes 
false. The system is now in state in which the next node’s guard must be true, and this 
condition will hold until that node executes its command. When it does, its state becomes 
that of its predecessor, which is the same as that of node 0. Thus node 0’s state will 
propagate all the way around the ring, until all nodes have the same state. Not until this 
global state is reached will node 0’s guard become true. However, as shown in part 2, the 
system is now in a stable state. 



Assume there exists at least one node whose state is greater than or equal to that of node 0, 
and that it’s not the case that all nodes have the same value. We know from part 1 that 
there’s always at least one node whose guard is true. Each time a command (associated with 
a true guard) is executed, either node 0’s state gets larger, or one other node’s state is set 
equal to its predecessor’s state (that previously was different from it). 

Let node i be the first node beyond node 0 whose state is different from node 0’s. After some 
number of executions, either node 0’s state will increase by 1, or node i will set its state to be 
the same as node 0’s (and thus the index of the first node beyond node 0 whose state is 
different from 0’s increases by at least 1). Thus, in a finite number of executions, either node 
0’s state increases by 1 or all nodes have the same state as node 0. 

Furthermore, the maximum of the nodes’ state values does not get larger unless node 0 has 
the state with the maximum value. Thus, eventually, either node 0’s state becomes larger 
than all others or the system reaches a global state in which all nodes have the same state 
(and thus after the next command execution, node 0’s state is larger than all other’s). 



We can modify the proof of part 4 by changing all occurrences of “increase by 1” to “increase 
by 1 (mod k)”. However, we have a problem with the last sentence because it is no longer clear 
that node 0’s state can get larger than all others, since there is now a bound on its size (k-1). 
But we can safely say instead that, eventually, either node 0’s state becomes 0 or the system 
reaches a global state in which all nodes have the same state. This clearly isn’t what we’re 
after. However, starting from this state we can repeat the argument of part 4: Again, let node i 
be the first node beyond node 0 whose state is different from node 0’s. After some number of 
executions, either node 0’s state will increase by 1 (mod k), or node i will set its state to be the 
same as node 0’s. In a finite number of executions, either node 0’s state increases by 1 (mod 
k) or all nodes have the same state as node 0. However long this takes, we will call it a round. 
As before, the maximum of the nodes’ state values does not get larger unless node 0 has the 
state with the maximum value. After no more than n rounds (and thus node 0’s state has not 
wrapped around), since we started with node 0’s state being 0, either node 0’s state is larger 
than all others or the system has reached a global state in which all nodes have the same 
state. 




