CS 138: Self-Stabilizing Systems

Cs 138

XX11-1 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Token Ring

CS 138

XXI1-2 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Token Ring Problem (1)

CS 138 XXII-3 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

What happens if the token disappears?



Token Ring Problem (2)

CS 138 XXIl-4 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

What if extra tokens spontaneously appear?



Enter Dijkstra

CS 138 XXII-5 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Among his many contributions, Edsger W. Dijkstra wrote a seminal paper on “Self-
stabilizing Systems in Spite of Distributed Control.” It was all of two pages long (1.75, to be
precise) and appeared in Communications of the ACM, Vol. 17, No. 11 (November 1974). One

of the journal’s editors supplied a comment on the paper: “the appreciation is left as an
exercise to the reader.”



Self-Stabilizing Systems

+ A distributed system has a set of legal states

* Suppose it’s zapped by some outside force
and enters an illegal state

<

* Can it be constructed so that it is guaranteed
to return to a legal state in a bounded amount
of time?

CS 138 XXII-6 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Notation, etc.

* Guarded commands
guard — command
- execute command when guard is true
+ Token ring
— node.state
- integer state of node
— node.next
- next node (clockwise)
— node. prev
- previous node (counter clockwise)

CS 138 XXII-7 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Solution

N nodes, each with k states, k > N

Special distinguished node

(node.prev.state == node.state) —

node.state++ (mod k)

All other nodes

(node.prev.state !'= node.state) —
node.state = node.prev.state

Legal system states

— exactly one guard is true

Cs 138

XXII-8

Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Example (1)

CS 138

XXII-9 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Example (2)

CS 138

XXII-10 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Example (3)

CS 138

XXII-11 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Example (4)

CS 138

XXII-12 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Example (5)

CS 138

XXII-13 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Example (6)

CS 138

XXIl-14 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Example (7)

CS 138 XXII-15 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

At this point, the system has finally achieved a legal state.



Example (8)

CS 138 XXII-16 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Now a machine gets zapped ...



Example (9)

CS 138

XXII-17 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Example (10)

CS 138

XXII-18 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Example (11)

CS 138

XXII-19 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Example (12)

CS 138

XXII-20 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Example (13)

CS 138

XXII-21 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Example (14)

CS 138 XXI1-22 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Once again, a legal state is reached.



Also ...

* Gave solutions with 4-state machines and 3-
state machines

+ Someone later proved that it cannot be done
with 2-state machines

Cs 138

XXI1-23 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Proof

+ Dijsktra didn’t bother ...

* It's up to us

Cs 138

XXI1I-24

Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Proof (1)

+ Explain why it is that at any particular
moment, at least one guard must be true,
even if the system has been zapped

» Special distinguished node

(node.prev.state == node.state) —
node.state++ (mod k)

All other nodes

(node.prev.state != node.state) —
node.state = node.prev.state

CS 138 XXII-25 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Either all nodes have the same state or there are at least two nodes with different states. If
the former, then node O’s guard is true. If the latter, then there must be at least two nodes
whose states are different from their predecessors. At least one of these nodes is not the
distinguished node, and thus its guard is true.



Proof (2)

* Show that if all nodes have the same value for
their states, the system is stable

— stable: the system is in a state in which only one
node’s guard is true; whenever the system changes
global state legally, it goes to a global state in
which the next node’s guard is the only one that’s

true
» Special distinguished node

(node.prev.state == node.state) —

node.state++ (mod k)
All other nodes

(node.prev.state != node.state) —

node.state = node.prev.state
CS 138 XXII-26 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

In this global state, only node O’s guard is true. Once its command is executed, its state
becomes one greater (mod k) and its guard is no longer true, but its successor’s guard is now
true, and no other guards are true. Once this node’s command is executed, its state is
replaced with its predecessor’s state and its guard is no longer true (and no other guards are
true). This continues around the ring until we are back to node 0. At this point, all states
again have equal values, and thus only node 0’s guard is true.



Proof (3)

+ Show that if node 0’s state is greater than
those of all other nodes, the system will
necessarily reach a stable global state.

» Special distinguished node

(node.prev.state == node.state) —
node.state++ (mod k)

All other nodes

(node.prev.state != node.state) —
node.state = node.prev.state

Cs 138

XXI1-27 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

In such a global state, node 0’s guard is false, but its successor’s guard is true. Regardless
of what else happens in the system, this condition will hold until the successor executes its
command. At that point, its state becomes equal to that of node O and its guard becomes
false. The system is now in state in which the next node’s guard must be true, and this
condition will hold until that node executes its command. When it does, its state becomes
that of its predecessor, which is the same as that of node 0. Thus node O’s state will
propagate all the way around the ring, until all nodes have the same state. Not until this
global state is reached will node O’s guard become true. However, as shown in part 2, the

system is now in a stable state.




Proof (4)

+ Assume now that each node’s state value is
an unbounded non-negative integer (i.e., k is
infinite). Show that, regardless of its current
state, the system will necessarily reach a
global state in which node 0’s state is greater
than those of all others.

» Special distinguished node

(node.prev.state == node.state) —
node.state++ (mod k)

All other nodes

(node.prev.state != node.state) —
node.state = node.prev.state

CS 138 XXII-28 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Assume there exists at least one node whose state is greater than or equal to that of node O,
and that it’s not the case that all nodes have the same value. We know from part 1 that
there’s always at least one node whose guard is true. Each time a command (associated with
a true guard) is executed, either node O’s state gets larger, or one other node’s state is set
equal to its predecessor’s state (that previously was different from it).

Let node i be the first node beyond node O whose state is different from node O’s. After some
number of executions, either node 0’s state will increase by 1, or node i will set its state to be
the same as node O’s (and thus the index of the first node beyond node O whose state is
different from O’s increases by at least 1). Thus, in a finite number of executions, either node
O’s state increases by 1 or all nodes have the same state as node O.

Furthermore, the maximum of the nodes’ state values does not get larger unless node O has
the state with the maximum value. Thus, eventually, either node O’s state becomes larger
than all others or the system reaches a global state in which all nodes have the same state
(and thus after the next command execution, node O’s state is larger than all other’s).



Proof (5)

* Redo part 4, this time assuming k>=n: the
system will necessarily reach a global state in
which node 0’s state is greater than those of

all others
» Special distinguished node

(node.prev.state == node.state) —

node.state++ (mod k)
All other nodes

(node.prev.state != node.state) —

node.state = node.prev.state
CS 138 XXI1-29 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

We can modify the proof of part 4 by changing all occurrences of “increase by 1” to “increase
by 1 (mod k)”. However, we have a problem with the last sentence because it is no longer clear
that node O’s state can get larger than all others, since there is now a bound on its size (k-1).
But we can safely say instead that, eventually, either node O’s state becomes O or the system
reaches a global state in which all nodes have the same state. This clearly isn’t what we’re
after. However, starting from this state we can repeat the argument of part 4: Again, let node i
be the first node beyond node O whose state is different from node 0’s. After some number of
executions, either node O’s state will increase by 1 (mod k), or node i will set its state to be the
same as node 0’s. In a finite number of executions, either node O’s state increases by 1 (mod
k) or all nodes have the same state as node 0. However long this takes, we will call it a round.
As before, the maximum of the nodes’ state values does not get larger unless node O has the
state with the maximum value. After no more than n rounds (and thus node O’s state has not
wrapped around), since we started with node O’s state being O, either node O’s state is larger
than all others or the system has reached a global state in which all nodes have the same
state.



Proof (6)

Show that the system won’t necessarily ever
enter a stable state after being zapped if k<n

» Special distinguished node

(node.prev.state == node.state) —
node.state++ (mod k)

All other nodes

(node.prev.state != node.state) —
node.state = node.prev.state

Cs 138

XXII-30 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




