CS 138: Practical Byzantine
Consensus

CS 138 XX1-1 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This lecture is based on “Practical Byzantine Fault Tolerance,” by M. Castro and B. Liskov,
published in the Proceedings of the Third Symposium on Operating Systems Design and
Implementation, New Orleans, USA, February 1999. It can be found at http://
research.microsoft.com/en-us/um/people/mcastro/publications/o0sdi99.pdf. The approach
described here is also used for the inner ring in OceanStore.

Scenario

Client

Client

Asynchronous system
+ Signed messages

» Servers are state machines
» It has to be practical

Cs 138

XX1-2

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Client

Client

The Request

Cs 138

XXI-3

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Non-Primaries Respond (1)

Client
A’
- rver
Client Serve
8
CS 138 XXI-4 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Non-Primaries Respond (2)

Client
prepare
=
prepare
Client

CS 138 XXI-5 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Non-Primaries Respond (3)

Client
@ prepare
prepare prepare
Client
CS 138 XXI-6 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Servers Commit to Request (1)

Client
A’
; Server
Client
8
CS 138 XXI-7 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Servers Commit to Request (2)

Client
commit
commit E
Client
CS 138 XXI-8 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Servers Commit to Request (3)

@ commit
commit

Client

commit

Client

CS 138 XXI-9 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Servers Commit to Request (4)

Client
commit
a commit
Client
CS 138 XXI-10 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

All Respond to Client

Client

Client

CS 138 XXI-11 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The client believes the result once it has received f+1 identical replies, where at most f
servers are faulty.

Contents of Messages

re-prepare: seq #; digest(msg) msg

prepare: seq #; digest(msg), i

CS 138 XXI-12 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The thick outline with the box containing i in the upper left-hand corner means the
contents of the larger box are signed by server i.

Be Prepared

* n servers, at most floor((n-1)/3) faulty servers
* A non-primary server is prepared when
— it has received pre-prepare message

— it has received matching prepare messages
from 2f-1 other non-primaries

- 2f non-primaries including itself
* It’s prepared to believe the primary
— both content of request and request sequence

CS 138 XXI-13 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

However ...

* There are multiple clients, each sending a
sequence of requests

« Communication isn’t perfect
— messages may arrive out of order

+ Server s may be prepared, but s’ is not
— but will be eventually

+ Server may be prepared for request q but not
for gq-1

Cs 138 XXI-14 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Commitment

« Server i multicasts commit message to all
others when it is prepared

| commit. seq #; digest(msg), i

+ A message is committed if it is prepared at f+1
non-faulty servers

— how does an individual server know this?

- itis prepared and has received 2f commits
from others

+ Server executes message when
— message is committed
—and all previous messages have been executed

CS 138 XXI-15 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Logging

* Each server maintains log of
— pre-prepares
— prepares
— commits

CS 138 XXI-16 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Checkpoints

Checkpoint = state of replica after all
messages through a particular sequence
number have been executed

Log can be trimmed when all agree on
replicas’ states

Servers periodically exchange signed
checkpoint messages

— contain digest of checkpoint

Checkpoint messages from 2f+1 different
servers constitute a proof of the checkpoint

Log up to the checkpoint can be replaced
with checkpoint and its proof

Cs 138

XXI1-17 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Traitorous Primary

Client sends request

No response from primary

Client re-sends request to all servers
Servers forward request to primary

If no response, then need new primary

Cs 138

XX1-18 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Views

* A particular primary server is in charge of a
view v

« If the primary changes, the view changes to v
+1

— the primary for view v is server v mod S
- S is the number of servers

CS 138 XXI-19 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

View Changes (1)

* Non-primaries who time-out waiting for server
send signed view-change messages

— provide
- most recent checkpoint plus proof
- list of prepared messages since checkpoint

* with proof: pre-prepare plus prepare
messages

CS 138 XXI1-20 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

View Changes (2)

* New primary, after receiving 2f valid view-
change messages, responds with new-view
message

— provides
- set of view-change messages
* i.e., proof of view change

- list of pre-prepare messages for all
prepared messages since checkpoint

* missing messages are nullified

— non-primaries move to new view and
reprocess prepared messages in this view

CS 138 XXI-21 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Performance

* BFS: Byzantine fault-tolerant NFS
—replicated NFS servers
— simplified implementation of NFS
- NFSv2

* Implementations tested
— BFS: 4 servers
— BFS-nr: one server
— NFS-std: Digital Unix NFSv2

CS 138 XXI1-22 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Andrew Benchmark

* phase 1
— creates subdirectories recursively
* phase 2
— copies a source-code tree
* phase 3
— examines status of all files without reading
their data
* phase 4
—reads all data bytes
* phase 5

— compiles and links all files

CS 138 XXI-23 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

BFS vs BFS-nr

BFS

phase strict r'o lookup BEFS-nr

1 0.55 (57%) 0.47 (34%) 0.35

2 9.24 (82%) 791 (56%) 5.08

3 7.24 (18%) 6.45 (6%) 6.11

4 8.77 (18%) 7.87 (6%) 741

5 38.68 (20%) | 3838 (19%) | 32.12
total | 6448 (26%) | 61.07 (20%) | 51.07

CS 138 XXI-24 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This table is taken from the aforementioned paper. The “r/o lookup” column is the result of
modifying BFS so that reading data does not cause the “time of last access” to be modified,
making it truly read-only. The times are in seconds. The percentages indicate how much
slower things were than when done with BFS-nr (no replication).

BFS vs. NFS
BFS
phase strict r/o lookup | NFS-std
1 0.55 (-69%) | 047 (-73%) 1.75
2 924 (-2%) | 7.91 (-16%) 9.46
3 724 (35%) | 6.45(20%) 5.36
4 877 (32%) | 7.87 (19%) 6.60
5 38.68 (-2%) | 38.38 (-2%) 3935
total 64 48 (3%) | 61.07 (-2%) 62.52
CS 138 XXI-25 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This looks impressive. However, NFS-std is NFS v2, which has synchronous writes. BFS
does not have synchronous writes, on the theory that they are unneeded given the replication.
A better comparison would have been with NFSv3. Also, BFS does not have a real local file
system, but a simplified file system that is not has robust as that used by NFS and, most
likely, much faster as a result.

