CS 138: Byzantine Consensus

CS 138 XIX-1 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This lecture is based on “The Byzantine Generals Problem,” a classic paper by L. Lamport,
R. Shostak, and M. Pease. It appeared in ACM Transactions on Programming Languages and
Systems, Vol. 4, No. 3 (July 1982). Within Brown it can be found at http://delivery.acm.org/
10.1145/360000/357176/p382-lamport.pdf?
key1=357176&key2=2878731721&coll=ACM&dI=ACM&CFID=58767845&CFTOKEN=877102
67. It is discussed in Coulouris et al. in Section 15.5.

Byzantine Generals Problem

Lieutenant
General

—| Commanding

General

Lieutenant
General

Cs 138

XIX-2

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Byzantine Generals Problem

Lieutenant
General

—| Commanding

General

Lieutenant
General

Cs 138

XIX-3

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Byzantine Generals Problem

+ C1: All loyal lieutenant generals obey the
same order

* C2: If the commanding general is loyal, then
every loyal lieutenant general obeys the order
she sends

CS 138 XIX-4 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Byzantine Agreement Problem

+ All generals co-equal

—each general i has a value v(i) she sends to the
others

1) Every loyal general must obtain the same
information v(17), ..., v(n)

2) If the ith general is loyal, then the value she
sends must be used by every loyal general
as the value of v(i)

CS 138 XIX-5 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This version of the problem can be solved by doing the Byzantine Generals Problem n times
concurrently, once with each general as the commander and the others as lieutenants.

Byzantine Generals Problem

CS 138 XIX-6 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Here the commander is a traitor.

Byzantine Generals Problem

She said

CS 138 XIX-7 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

To check whether a traitor is in their midst, the lieutenants exchange messages stating
what they heard from the commander.

Byzantine Generals Problem

She said

CS 138 XIX-8 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Of course, it might not be the commander who’s a traitor, but one of the lieutenants. Note
that, from the point of view of the bottom-left general, there’s no difference between this
scenario and the one of the previous slide. He can’t be sure, if he attacks, that there will be
another general joining him. Though this isn’t a formal proof, it should be convincing

evidence that with three generals of whom at most one is a traitor, the Byzantine generals
problem has no solution.

Summing Up

* Byzantine Generals Problem with 3 Generals,
at most one of whom is a traitor ([3,1]BGP)

— no solution satisfying C1 and C2

Cs 138

XIX-9 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Message-Passing Assumptions

* Every message sent is delivered
correctly

* The receiver of a message knows
who sent it

* The absence of a message can
be detected

CS 138 XIX-10 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The last assumption is satisfied in synchronous systems.

[4, 0] Byzantine Generals Problem

CS 138 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

[4,1] Byzantine Generals Problem

1e said

Attack!

CS 138 XIX-12 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Here we have four generals, with at most one of them a traitor. In this case, the traitor is the
commanding general.

[4,1] Byzantine Generals Problem

She said

Attack!

She said
Attacl!
Attack:

She said

CS 138 XIX-13 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Again we have four generals, but the traitor is the rightmost general. The two lieutenant
generals can’t distinguish this situation from the one of the previous slide. However, in both
cases, since the majority of messages received say attack, they can feel confident that if they
attack, they will be joined by two other generals.

Some Details

+ Each general receives messages u, v, and w
from the others

—if no message is received, interpret its lack as
“retreat”

* Loyal general takes its order to be
majority(u, v, w)
— if no majority: retreat

Cs 138 XIX-14 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Summing Up

* Byzantine Generals Problem with 4 Generals,
one of whom is a traitor ([4,1]BGP)

— solvable

Cs 138

XIX-15 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Theorem

* If N is the number of generals and T is the
number of traitors, then there is a solution to
the Byzantine Generals Problem iff

N>3T

CS 138 XIX-16 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The assumptions here are that communication is synchronous and that messages are
unsigned. We’ll modify these assumptions soon.

Proof

* Only if:
— assume a solution exists for N < 3T
- 3T Albanian generals can cope with T traitors

— three Byzantine generals now take advantage of the
Albanian approach to solve [3,1]BGP

- commander simulates Albanian commander plus at
most T-1 lieutenant generals

- two lieutenant generals each simulate at most T
Albanian lieutenant generals

— loyal Byzantine generals simulate loyal Albanians

— traitorous Byzantine general does whatever it takes to
mess things up

- effectively simulates actions of up to T traitorous
Albanian lieutenant generals

CS 138 XIX-17 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The reference to Albanians comes from the original paper ...

Albanian Simulation

Albanian
commander

A

CS 138 XIX-18 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Proof (Continued)

+ By C1: all loyal Albanian lieutenant generals
obey same order
— thus loyal Byzantine lieutenant generals obey
orders obeyed by simulated Albanians

+ By C2: if Albanian commander is loyal, then
all loyal Albanian lieutenant generals obey
her order

— thus if Byzantine commander is loyal, her
order is that of Albanian commander

CS 138 XIX-19 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Albanian Simulation

Albanian
A commander

e

CS 138 XIX-20 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Proof (Half Done)

» This gives us a method to solve [3,1]BGP
— which can’t be done ...

Cs 138

XIX-21 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Proof (remainder)

. If:
— Show that a solution exists if N > 3T
o 1TTER
* done
- T>1
* hard
—next few slides

CS 138 XIX-22 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

[7,2]BGP

+ Case 1: the commander is loyal
— six lieutenants receive order v
— four report it to one another correctly
— two (traitors) do not
— correct outcome determined by majority
— (that was easy!)

Cs 138

XIX-23 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

[7,2]BGP (continued)

+ Case 2: the commander is a traitor (and so is
someone else)

— not so easy ...

— if the commander is a traitor, there is only one
traitor among the lieutenants, so they can work
out agreement assuming only one traitor

- this is the Byzantine agreement problem,
which means each lieutenant runs the
algorithm

CS 138 XIX-24 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The Algorithm, part 1

*« BGP(0) /I no traitors

1) the commander sends her value to each
lieutenant

2) each lieutenant uses the value he receives
from the commander

Cs 138

XIX-25

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This is from the aforementioned paper by Lamport, Shostak, and Pease. It’s easy to analyze,
but it’s not a well formed algorithm ...

The Algorithm, part 2

* BGP(m) // m traitors

1) the commander sends her value to each
lieutenant

2) for each i, let v; be the value lieutenant i
receives from the commander. Lieutenant i
acts as the commander in BGP(m-1) to send
v; to each of the n-2 other lieutenants

3) for each iand each k #i, let v, be the value
lieutenant i received from lieutenant k in step

2 (using BGP(m-1)). Lieutenant i uses the
value majority(v,, ..., v,_,)

CS 138 XIX-26 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This is from the aforementioned paper by Lamport, Shostak, and Pease.

r—
\:h

-_—
-

CS 138 XIX-27 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

In this slide we work out the notation we’ll be using for [7,2] (and beyond).

The commander, C, sends its order (v,) to the lieutenants. Lieutenant i stores it in ;v,°. The
Lieutenants then send their values to the others. The value Lieutenant k receives from
Lieutenant m is placed in ,v_,™°. The intent is that the superscripts show the paths through
the tree. Lieutenant 1 follows the order majority(,vy°, V5,20, ,v530); lieutenant 2 follows the
order majority(,vy°, ,v;19, ,v530); lieutenant 3 follows the order majority(;v,°, 5v;1°, 53v,29).

[7,1]: Commander is Loyal

o

0 0 0 0 0 0

CS 138 XIX-28 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Consider now BGP with 7 generals, two of whom might be traitors. If we’re assured the
commander is not a traitor, then each lieutenant can simply use the order received from the
commander.

[7,1]: Commander is a Traitor

CS 138 XIX-29 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

If the commander could be a traitor, then the lieutenants must check with one another what
order was actually sent. The slide shows the result of lieutenants 2 and 5 communicating
with the others. If none of the lieutenants are traitors, we need go no further (though all the
other lieutenants must communicate the orders they received as well). But, of course, it’s not
known whether any of the lieutenants are traitors.

0 0 0

[7,2]: ... and a Lieutenant is a Traitor

Vo
0 0

20 20 20 20
|1V2 ‘ ’3V2 ‘ ’4V2 | ‘5V2 |

DI,

|1V332°| ‘4V332°| ‘5V332°LL 1J6V3320@ @

620 620
’1V6 | ’3V6 ‘

620 620
’4V6 ‘ |5Ve ‘

Cs 138

XIX-30

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

But if both the commander and one of the lieutenants may be traitors, then more work is
required. Here lieutenant 2 has communicated the order it received from the commander to
the others, as in the previous slide. However, since one of the lieutenants may be a traitor, no
one trusts lieutenant 2 to have communicated the same order to each of the others. We now
have another instance of BGP, this time with at most one traitor (since we’re already
assuming the commander is a traitor). Thus the other lieutenants communicate with one
another the order they received from lieutenant 2 (effectively saying to one another “lieutenant
2 said that the commander said ...”). Of course we have to do this for each of the lieutenants,

so the complete diagram gets rather large.

A Better (?) Algorithm ...

BGP(m, gens, v, path, sender) {
if (m>0) {
/I tell others what was received
for each g in gens—-me
sendmsg(g, BGP, m-1, gens—me, v, me-path, me)
Il wait till all resulting communication is complete
when defined((VgEgens) . v,9Path)
/I compute consensus value
mevsenderpath = majority(v, (VQEQenS) mevgg.path)
}Yelse{ /Im==
path = v

meVsender

CS 138 XIX-31 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Here’s an attempt at a correct algorithm for BGP. It’s initially invoked by the commander. m
is the maximum number of traitors. gens is the set of generals (initially including the
commander). v is the order (value). path is the path taken from the root (i.e., from the
commander), initially empty. sender is the ID of the invoker, where O is the commander.

The sendmsg routine sends a message to the general given by the first argument. That
general is to execute the command (i.e., procedure) given in the second argument (BGP), with
the following arguments.

Note that the recursion proceeds in a breadth-first rather than a depth-first manner. After a
sequence of calls to sendmsg, the caller does not wait for the results of these invocations to
complete, but for the results of the invocations of sibling subtrees. In other words, the
invocations a general makes of BGP are to send messages to other generals. What the general
waits for is for the other generals to send messages to it. This waiting is handled by the “when
defined” statement, which waits for the set of variables given as arguments to be given values.
In principle it could be implemented as a sequence of operations on a set of semaphores, one
for each variable.

Complexity

* How expensive is the algorithm for BGP?
— T+1 rounds of messages
— O(NT) messages, for N generals and T traitors
+ Can we do better?
— T+1 rounds are required
— polynomial algorithm exists, but for N > 4T
- next few slides ...

CS 138 XIX-32 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

An Even Better Algorithm

+ Agreement on one of two values
T traitors; T+1 phases; N > 4T
In each phase, a different general is the
commander
— all generals broadcast values to one another
—recipients determine “majority”
- commander’s value is tie-breaker
In at least one phase, the commander is loyal
— consensus reached in this phase
— doesn’t change in subsequent phases

CS 138 XIX-33 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This algorithm is from “Cloture Votes: n/4-resilient Distributed Consensus in (T+1)
Rounds,” P. Berman and J. Garay, Mathematical Systems Theory, 26(1), 1993.

Details

for (phase = 1; phase <= T+1; phase++) {
Il round 1: executed by each general
broadcast value to all others
await value v; from each general G;
majority = value that occurs > N/2 times
default value otherwise
mult = number of times majority occurs

CS 138 XIX-34 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This presentation is taken from “Distributed Computing: Principles, Algorithms, and
Systems,” by Ajay D. Kshemkalyani and Mukesh Singhal, Cambridge University Press, 2008.

Details (2)

/I round 2: executed by each general
if (this is Gp,se)
Il Gppase is (temporary) commander
broadcast majority to all other generals
else
receive tiebreaker from G,
if (mult>N/2 +T)
value = majority Il super majority
else
value = tiebreaker

Cs 138

XIX-35 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Correctness

Assume commander in phase p is loyal

— its value x (from round 1) is either majority or
default value

— it broadcasts x in round 2

Claim 1: all loyal generals (including phase p
commander) agree on value

— proof: soon

Claim 2: if all loyal generals agree on value at
beginning of phase i, they agree at end of
phase i

— proof: soon
After phase T+1, all loyal generals agree

Cs 138

XIX-36 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Claim 1

+ All loyal generals (including phase p
commander) agree on value

— consider all pairs of loyal lieutenants G; and G,
—they can set their values in one of three ways:
- both set their value to the (super) majority

* super majority must involve more than
n/2 loyal lieutenants

» any two such majorities must have a
member in common

—thus G, and G, have same value
* G, must have heard from same majority
—it also has same value

CS 138 XIX-37 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Claim 1 (continued)

- both set their value to the commander’s tie-
breaking rule

* since commander is loyal, both now
agree with commander

- G, sets value to (super) majority; G, to tie-
breaking rule
* since super majority agrees with G;,
more than n/2 loyal nodes agree, thus G,
agrees

* G, value is adopted by G,
—i.e., this case is same as first case

CS 138 XIX-38 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Claim 2

« If all loyal generals agree on value at
beginning of phase i, they agree at end of
phase i

— all generals receive consensus value from a
majority of others in round 1

— thus all loyal generals stay with this value in
round 2

CS 138 XIX-39 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Complexity

* T+1 phases
* n:(n-1) messages in round 1
* n-1 messages in round 2

Cs 138

XIX-40 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Signed Messages

Here the commander cryptographically signs her messages and the lieutenants are required
to send copies of the signed messages to the others. Thus a traitorous lieutenant cannot lie
about what the commander sent.

Signed Messages

CS 138 XIX-42 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Here both lieutenant generals realize the commander is a traitor. However, the two of them
must nevertheless come to a consensus. If there isn’t a clear majority for attack or retreat (as
is the case here), then the convention is that they retreat. Thus they have a consensus.

Failures

e said

Attack!

CS 138 XIX-43 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Here one lieutenant has failed to respond. In a synchronous system, we can use a timeout
to decide that a process has failed and thus, in this case, interpret the silence as a “retreat”.

Asynchronous Communication

* Processes may respond to messages at
arbitrary times

— can’t use timeouts to determine failures
« BGP has no solution

— non-responding general might respond at any
time with whatever response counters the
decision made assuming it was missing

—in practice this is surmountable

Cs 138 XIX-44 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Surmounting Failure

* Recover quickly

— state kept in non-volatile memory
* Detect failure

— enforced timeouts
* Be unpredictable

—randomized algorithm

Cs 138

XIX-45 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

