CS 138: Distributed Transactions

CS 138 XVIiI-1 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Many of the slides through slide 21are figures from Coulouris, Dollimore, Kindberg, and
Blair.

Transactions

+ “ACID” property:
— atomic
- all or nothing
— consistent

- take system from one consistent state to
another

— isolated

- have no effect on other transactions until
committed

— durable
- persists

Cs 138

XVII-2 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Operations of the Account
interface

deposit(amount)

deposit amount in the account
withdraw(amount)

withdraw amount from the account
getBalance() -> amount

return the balance of the account
setBalance(amount)

set the balance of the account to amount

create(name) -> account

create a new account with a given name
lookUp(name) -> account

return a reference to the account with the given name
branchTotal() -> amount

return the total of all the balances at the branch

CS 138 XVIII-3 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Figure 16.1. A pair of interfaces to be used in upcoming examples.

A client’s banking transaction

Transaction T:
a.withdraw(100);
b.deposit(100);
c.withdraw(200);
b.deposit(200);

CS 138 XVil-4 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Figure 16.2: A sample banking transaction using the account interface.

Operations in Coordinator
interface

openTransaction() -> trans;
starts a new transaction and delivers a unique TID
trans. This identifier will be used in the other
operations in the transaction.

closeTransaction(trans) -> (commit, abort);
ends a transaction: a commit return value indicates
that the transaction has committed; an abort return
value indicates that it has aborted.

abortTransaction(trans);
aborts the transaction.

CS 138 XVIII-5 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Figure 16.3

Transaction Life Histories

Successful Aborted by client Aborted by server
openTransaction openTransaction openTransaction
operation operation operation
operation operation operation

server aborts
(] (] K (]
. . transaction =~ =——> .
operation operation operation ERROR
reported to client
closeTransaction abortTransaction
CS 138 XVII-6 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Figure 16.4

The lost update problem

Initial balances: a: $100, b: $200, c: $300

Transaction T: Transaction U:
b.setBalance(balance*1.1); b.setBalance(balance*1.1);
a.withdraw(balance/10) c.withdraw(balance/10)

balance = b.getBalance(); $200
balance = b.getBalance(); $200
b.setBalance(balance*1.1); $220
b.setBalance(balance*1.1); $220
a.withdraw(balance/10) $80
c.withdraw(balance/10) $280

CS 138 XVII-7 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Figure 16.5

The inconsistent retrievals
problem
Transaction V: Transaction W:
Z:gggggzx(ggo) aBranch.branchTotal()
a.withdraw(100); $100
total = a.getBalance() $100
total = total+b.getBalance() $300
total = total+c.getBalance()
b.deposit(100) $300 o
cs 138 XVIIl-8 Copyright ©2016 Thomas W. Dosppner. Al rights reserved.

Figure 16.6

Serial Equivalence

« Consider the effect of a concurrent execution
of transactions A and B

Al B
 What should our correctness criteria be?

* Intuitively, it should be equivalent to some
serial execution:

A;B
B;A
* We say that A || B is serially equivalent if it
has the same effect as either A;B or B;A

CS 138 XVII-9 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

A serially equivalent
interleaving of T and U

Transaction T: Transaction U:

balance = b.getBalance() balance = b.getBalance()
b.setBalance(balance*1.1) b.setBalance(balance*1.1)
a.withdraw(balance/10) c.withdraw(balance/10)

balance = b.getBalance() $200

b.setBalance(balance*1.1)$220
balance = b.getBalance() $220

b.setBalance(balance*1.1)$242
a.withdraw(balance/10) $80

c.withdraw(balance/10) $278

CS 138 XVIII-10 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Figure 16.7

A serially equivalent
interleaving of Vand W

Transaction V:

Transaction W:
a.withdraw(100);

b.deposit(100) aBranch.branchTotal()
a.withdraw(100); $100
b.deposit(100) $300

total = a.getBalance() $100

total = total+b.getBalance() $400
total = total+c.getBalance()

Cs 138

XVII-11 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Figure 16.8

Read and write operation
conflict rules

Operations of different Conflict Reason
transactions
read read No Because the effect of a pair of read

operations does not depend on the order
in which they are executed

read write Yes Because the effect of a read and a write
operation depends on the order of their
execution

write write Yes Because the effect of a pair of write
operations depends on the order of their
execution

CS 138 XVIII-12 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Figure 16.9

Serially Equivalent?

Transaction R: Transaction S:
x = read(i)
te(i, 10
write(i, 10) = e
write(f, 30)
te(j, 20
write(j, 20) z = read (i)

Rule: Two transaction executions are serially
equivalent iff all conflicting operations of the two are
executed in the same order.

CS 138 XVIII-13 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Figure 16.10: Note that all of R’s accesses to i come before S’s, and all of S’s accesses to j
come before R’s. Nevertheless this is not a serially equivalent concurrent execution of R and
S.

Concurrency Control

« How to ensure that transaction executions are
serializable:

— locking
— optimism

Cs 138

XVIll-14 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

A dirty read when transaction T

aborts
Transaction T: Transaction U:
a.getBalance() a.getBalance()
a.setBalance(balance + 10) a.setBalance(balance + 20)

balance = a.getBalance() $100
a.setBalance(balance + 10) $110
balance = a.getBalance() $110

a.setBalance(balance + 20) $130

commit transaction
abort transaction

CS 138 XVIII-15 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Figure 16.11: The isolation property requires that transactions do not see the uncommitted
state of other transactions.

Overwriting uncommitted

values
Transaction T: Transaction U:
a.setBalance(105) a.setBalance(110)
$100
a.setBalance(105) $105
a.setBalance(110) $110

abort transaction
commit transaction

CS 138 XVIII-16 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Figure 16.12: Suppose U aborts after overwriting A.

Transactions T and U with
exclusive locks

Transaction T: Transaction U:
balance = b.getBalance() balance = b.getBalance()
b.setBalance(bal*1.1) b.setBalance(bal*1.1)
a.withdraw(bal/10) c.withdraw(bal/10)
Operations Locks Operations Locks
openTransaction
bal = b.getBalance() lock B
b.setBalance(bal*1.1) openTransaction
a.withdraw(bal/10) lock A bal = b.getBalance() waits for T's lock on B
closeTransaction unlock A, B XY

lock B

b.setBalance(bal*1.1)
c.withdraw(bal/10) lock C

closeTransaction unlock B,C

Cs 138

XVII-17 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Figure 16.14

Two-Phase Locking

1) Acquire locks
2) Release locks

* No more locks may be acquired after any
lock is released

+ Strict two-phase locking
— no locks released until transaction commits

Cs 138 XVII-18 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Two-Phase-Locking Intuition

Transaction B

Transaction A lock B,
lock A, lock B,
lock A, lock Bs
lock A, lock B,
lock A, lock By
lock A lock Bg
unlock all lock B,
lock Bg
lock By

unlock all

CS 138 XVIII-19 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Transaction A completes before transaction B. Two-phase locking was used. Is it necessarily
the case that their concurrent execution is equivalent to first executing all of A, then all of B?

Transaction Steps

+ Accumulate changes
— store as “tentative versions”
* Make sure everything is ok
+ Commit or abort
— move tentative versions to actual
or
— delete tentative versions

Cs 138

XVIII-20 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

T : top-level transaction
Tq = openSubTransaction T, = openSubTransaction
commit
T / T,: \
openSubTransaction openSubTransaction openSubTransaction
prov. commit abort
T11 : T12: T21 .
openSubTransaction
prov. commit prov. commit Tor - \ prov. commit
211
prov.commit
CS 138 XVII-21 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Figure 16.13

Distributed Transactions
withdraw(100);
a
Begin Transaction;
a.withdraw(100); . .
b.deposit(50): slEmeEat)
c.deposit(50); b
End Transaction;
client
deposit(50);
C
CS 138 XVII-22 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Much of the remainder of this lecture is adapted from the textbook by Tanenbaum and Van
Steen and from Chapter 7 of Concurrency Control and Recovery in Database Systems, by P.
Bernstein, V. Hadzilacos, and N. Goodman, Addison-Wesley (1987). The latter text is available
at http:/ /research.microsoft.com/en-us/people/philbe/ccontrol.aspx.

Coordination

Coordinator

Begin Transaction; \
a.withdraw(100);
b.deposit(50); —
c.deposit(50);

0

End Transactio
client

withdraw(100);

a

deposit(50);

b

deposit(50);

c

CS 138 XVIII-23

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Atomic Commit

« AC1: All participants that reach a (commit/
abort) decision reach the same one

+ AC2: A participant cannot reverse its decision

 AC3: The commit decision can be reached
only if all participants agree

* AC4: If there are no failures and all
participants vote yes, then decision will be
commit

« AC5: For any execution, if all failures are
repaired and no new failures occur for a
sufficiently long interval, then all participants
will reach a (commit/abort) decision

CS 138 XVIli-24 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This is adapted from Bernstein et al.

Two-Phase Commit

* Phase 1
— coordinator prepares to commit:

- asks participants to vote either “commit” or
“abort”

— participants respond appropriately
* Phase 2
— coordinator decides outcome:

- if all participants vote commit, outcome is
commit, otherwise outcome is abort

- outcome sent to all participants
— participants do what they’re told

CS 138 XVIII-25 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

State Diagrams

vote reg/abol

app commit/vote req vote reg/commit

Coordinator Participant

CS 138 XVII-26 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The labeling of the arcs (A/B) means that if “A” occurs, then perform action “B” and follow
the arc to the next state.

Failures

+ Coordinator or participants could crash
— assume “fail-stop”
- crash detected by time-out
- no byzantine failures
— crashed machines restart
- recover their state

Cs 138

XVII-27 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Crash Points

vote reg/abol

app commit/vote req

vote reg/commit

Uncertain
any abort/aborp all commit/commit

Coordinator Participant

CS 138 XVIII-28 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Dealing with Timeouts (1)

+ Coordinator times out in Wait state
— waiting for a participant to vote
— takes no response to mean “abort”
— sends abort to all other participants
» Participant times out in Uncertain state

— waiting for coordinator to say “commit” or
“abort”

— can’t assume either outcome
— waits for coordinator to restart
— contacts coordinator for final outcome

CS 138 XVIII-29 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Dealing with Timeouts (2)

» Coordinator could take long time to restart
* Participants contact other participants
— p contacts q (p is in Uncertain state)
—qis in:
- commit (or abort) state
* p goes to commit (or abort) state
- init state (hasn’t yet voted) vote reg/abort
* both q and p abort
- uncertain state
* both p and q remain uncertain

vote reg/commit

CS 138 XVIII-30 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This implies that the participants know one another’s identities. They could be supplied by
the coordinator in the initial vote request.

Improving on Two-Phase
Commit

* It works fine in practice!
* But...

— all participants could conceivably be in
uncertain state and coordinator is down (for a
long time)

+ Can we make it so such blocking can’t
happen?

Cs 138 XVII-31 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

What Causes Blocking?

* Coordinator is down

+ If all operational (not-failed) participants are
in uncertain state, they are blocked

« If all participants are operational, they can
elect new coordinator

+ If any participant has crashed, the others
don’t know if it crashed before or after voting
(to commit or abort)

CS 138 XVIII-32 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Guaranteeing Non-Blocking

* Non-blocking property (NB):

— if any operational process is in the Uncertain
state, then no process (operational or failed)
can have decided to commit

 If NB holds, then operational processes may
elect new coordinator and decide to commit
or abort

CS 138 XVIII-33 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Note that NB does not hold for two-phase commit!

Failures

+ Coordinator or participants could crash
— no communication failures
— assume “fail-stop”
- crash detected by time-out
- no byzantine failures
— crashed machines restart
- recover their state

CS 138 XVIII-34 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

For our upcoming discussion of three-phase commit, we assume that the only sort of failure
is that of a machine crashing (then recovering). In particular, communication failures do not
happen.

Three-Phase Commit

* Phase 1
— coordinator prepares to commit:
- asks participants to vote either “commit” or “abort”
— participants respond appropriately
* Phase 2
— coordinator counts votes:

- if all participants vote commit, outcome is pre-
commit, otherwise outcome is abort

- outcome sent to all participants
— participants ack and either abort or wait for commit
* Phase 3
— coordinator waits for all acks
- if committing, sends final commit to all participants
— participants commit

CS 138 XVIII-35 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Revised State Diagrams

vote reg/abol

app commit/vote req vote reg/commit

commit/commit

Commit

CS 138 XVIII-36 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Timeouts (1)

vote reg/abol
app commit/vote req

commit/commit

Commit

CS 138 XVII-37 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

If a participant times out in its init state while waiting for a vote req from the coordinator, it
may safely unilaterally abort.

Timeouts (2)

vote reg/abol

app commit/vote req
Abort

any abort/aborp all commit/precommit

vote reg/commit

precommit/ack

commit/commit

Commit

CS 138 XVIII-38 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

If the coordinator times out in its wait state while waiting to receive votes from participants,
it should send aborts to all operational participants.

Timeouts (3)

vote reg/abol

app commit/vote req vote reg/commit

precommit/ack

commit/commit

Commit

CS 138 XVIII-39 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

If the coordinator times out while in its precommit state, waiting to receive acks from the
participants, it may safely commit, since it had received commit votes from all. The failed
participants will learn about the commit when they reboot.

Timeouts (4)

vote reg/abol

app commit/vote req vote reg/commit

Uncertain

commit/commit

Commit

CS 138 XVIII-40 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

If a participant times out in its uncertain state waiting to hear from the coordinator, it must
communicate with the other operational participants to determine if it should commit or
abort. In particular, if any other participant has aborted, it should abort. But what if this is
not the case? (Go on to the next slides ...)

Timeouts (5)

vote reg/abol

app commit/vote req vote reg/commit

commit/commit

Commit Commit

CS 138 XVIII-41 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

If a participant times out in its precommit state, waiting to hear from the coordinator,
shouldn’t it simply assume it may commit? The answer is no, because that might violate NB:
there may be some other participant that’s still in the uncertain state.

The situation we’re concerned about is that, after committing, the participant might fail,
while some other participant (perhaps the only other participant) remains operational, but in
the uncertain state. That participant, now not knowing anything about the states of the
others, should be allowed to abort by virtue of NB.

Details (1)

« If original coordinator remains operational

— participant crashes handled as in two-phase
commit

* If participant times out in Uncertain or
PreCommit states

— if any other participant has aborted, it aborts (it
must have been in Uncertain state)

— otherwise, it starts an election for a new
coordinator

Cs 138 XVI-42 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Details (2)

* When newly elected coordinator starts up

— sends state-request message to all operational
participants

— coordinator collects states and proceeds according to
four termination rules (termination protocol):

- TR1: if any participant is in Abort state, all are sent
abort messages

- TR2: if some participant is in Commit state, all are
sent commit messages

- TR3: if all participants are in Uncertain state, all
are sent abort messages

- TR4: if some participant is in PreCommit state, but
none in Commit State, those in Uncertain state are
sent PreCommit messages; once these are acked,
all participants are sent commit messages

CS 138 XVIII-43 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Note that the newly elected coordinator could fail. If so, a new one is elected. (Participants
will time-out waiting for a message.)

Details (3)

* When failed participant comes back up
— if it failed in Init state
- itaborts

— Otherwise it asks other participants for
outcome

- will eventually get either commit or abort

* (could get abort even if it was in the
PreCommit state when it crashed)

Cs 138 XVI-44 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Correctness (1)

* Lemma 1: After a new coordinator starts up,
exactly one of TR1 — TR4 will hold
* Theorem 1: In the absence of total failures,
participants will never block
— they clearly won'’t block if the coordinator
never fails
— if the coordinator fails, a new one is elected
—one of TR1-TR4 will hold and a decision will be
reached

— if the new coordinator fails, a new one is
elected; if it fails another is elected, etc. until
there are no more participants

Cs 138 XVIII-45 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

For details, see chapter 7 from Bernstein et al.

Correctness (2)

* Lemma 2: All participants that reach a
decision on the same invocation of the
termination protocol reach the same one

* Lemma 3: If NB holds before the termination
protocol starts, it holds through the execution
of the protocol

* Theorem 2: All operational participants reach
the same decision

— proof by induction on the invocations of the
termination protocol

Cs 138 XVII-46 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Total Failure

* What if coordinator and all participants fail?

* When they come back up, how do they
decide?

— if resurrected participant either didn’t vote or
voted abort, it may unilaterally abort

— otherwise, must run termination protocol

— but works only if last participant to fail has
come back up

Cs 138 XVII-47 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

See Bernstein et al. for details.

Communication Failures

* Network could partition into multiple pieces
* Not sufficient to get agreement in a piece containing
a quorum
— consensus is required for commit!
* Scenario
— all participants vote
— coordinator collects results
— network partitions before or after all results collected
— if network reconnects: easy

— network never fully reconnects, but each participant
eventually can communicate (perhaps briefly) with all
others

Cs 138 XVII-48 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

See Bernstein et al. for details.

