
Many of the slides through slide 21are figures from Coulouris, Dollimore, Kindberg, and
Blair.

Figure 16.1. A pair of interfaces to be used in upcoming examples.

Figure 16.2: A sample banking transaction using the account interface.

Figure 16.3

Figure 16.4

Figure 16.5

Figure 16.6

Figure 16.7

Figure 16.8

Figure 16.9

Figure 16.10: Note that all of R’s accesses to i come before S’s, and all of S’s accesses to j
come before R’s. Nevertheless this is not a serially equivalent concurrent execution of R and
S.

Figure 16.11: The isolation property requires that transactions do not see the uncommitted
state of other transactions.

Figure 16.12: Suppose U aborts after overwriting A.

Figure 16.14

Transaction A completes before transaction B. Two-phase locking was used. Is it necessarily
the case that their concurrent execution is equivalent to first executing all of A, then all of B?

Figure 16.13

Much of the remainder of this lecture is adapted from the textbook by Tanenbaum and Van
Steen and from Chapter 7 of Concurrency Control and Recovery in Database Systems, by P.
Bernstein, V. Hadzilacos, and N. Goodman, Addison-Wesley (1987). The latter text is available
at http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx.

This is adapted from Bernstein et al.

The labeling of the arcs (A/B) means that if “A” occurs, then perform action “B” and follow
the arc to the next state.

This implies that the participants know one another’s identities. They could be supplied by
the coordinator in the initial vote request.

Note that NB does not hold for two-phase commit!

For our upcoming discussion of three-phase commit, we assume that the only sort of failure
is that of a machine crashing (then recovering). In particular, communication failures do not
happen.

If a participant times out in its init state while waiting for a vote req from the coordinator, it
may safely unilaterally abort.

If the coordinator times out in its wait state while waiting to receive votes from participants,
it should send aborts to all operational participants.

If the coordinator times out while in its precommit state, waiting to receive acks from the
participants, it may safely commit, since it had received commit votes from all. The failed
participants will learn about the commit when they reboot.

If a participant times out in its uncertain state waiting to hear from the coordinator, it must
communicate with the other operational participants to determine if it should commit or
abort. In particular, if any other participant has aborted, it should abort. But what if this is
not the case? (Go on to the next slides ...)

If a participant times out in its precommit state, waiting to hear from the coordinator,
shouldn’t it simply assume it may commit? The answer is no, because that might violate NB:
there may be some other participant that’s still in the uncertain state.

The situation we’re concerned about is that, after committing, the participant might fail,
while some other participant (perhaps the only other participant) remains operational, but in
the uncertain state. That participant, now not knowing anything about the states of the
others, should be allowed to abort by virtue of NB.

Note that the newly elected coordinator could fail. If so, a new one is elected. (Participants
will time-out waiting for a message.)

For details, see chapter 7 from Bernstein et al.

See Bernstein et al. for details.

See Bernstein et al. for details.

