CS 138: Google

CS 138 XVII-1 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This material is covered in the textbook in Chapter 21.

Google Environment

* Lots (tens of thousands) of computers
— all more-or-less equal
- processor, disk, memory, network interface
— no specialized servers

—even if only .01% down at any one moment,
many will be down

CS 138 XVII-2 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Google File System

* Not your ordinary file system
— small files are rare
— large files are the rule
- typically 100 MB or larger
- multi-GB files are common
—reads
- large sequential reads
- small random reads
— writes
- large concurrent appends by multiple clients
- occasional small writes at random locations
— high bandwidth better than low latency

CS 138 XVII-3 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

“The Google File System” paper, by S Ghemawat, H Gobioff, and S-T Leung, was published
in the proceedings of the ACM Symposium on Operating Systems Principles in October 2003
and may be found at http://labs.google.com/papers/gfs-sosp2003.pdf.

Some Details

* GFS master computer holds metadata
— locations of data
— directory

* Files split into 64-MB chunks

— each chunk replicated on three computers
(chunkservers)

— master assigns chunks to chunkservers
- does load balancing

- takes into account communication distance
from clients

CS 138 XVIl-4 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

More Details

e Fault tolerance
— chunkserver crash

- master re-replicates as necessary from
other chunkservers

— master crash
- restart is quick

- if not possible (disk blew up), a backup
master takes over with checkpointed state

CS 138 XVII-5 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Architecture

Client Master

Chunkserver T Chunkserver T Chunkserver —H

II |ll |II

CS 138 XVII-6 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Master and Chunkservers

+ Master assigns chunks to chunkservers
— assignment kept in volatile storage on master
— ... on disk on chunkservers
- in Linux local file system

— master recovers assignment from
chunkservers on restart

* Master and chunkservers exchange heartbeat
messages

— keep track of status
— exchange other information

CS 138 XVII-7 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Issues

+ Consistency
— all replicas are identical*
+ Atomicity

— append operations are atomic, despite
concurrency

*for a suitable definition of identical:
hold the same data, modulo duplicates

Cs 138

XVII-8 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Chunks and Mutations

* Operations that modify chunks are
“mutations”

* When a chunk is to be mutated, master grants
one replica a lease

— that replica becomes the primary

— it determines order of concurrent mutations
- assigns serial numbers

— lease lasts 60 seconds

— can be extended via heartbeat messages

CS 138 XVII-9 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Write Flow

| Client Master

‘3
Chunkserver: |,
secondary replica

R 2

— Chunkserver:
primary replica 5

v s

Chunkserver:
secondary replica

N

A2

pa

CS 138 XVII-10 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This slide and the discussion below are from the aforementioned paper, “The Google File
System.”
1)“The client asks the master which chunkserver holds the current lease for the chunk and
the locations of the other replicas. If no one has a lease, the master grants one to a replica it
chooses (not shown).
2)“The master replies with the identity of the primary and the locations of the other
(secondary) replicas. The client caches this data for future mutations. It needs to contact the
master again only when the primary becomes unreachable or replies that it no longer holds a
lease.
3)“The client pushes the data to all the replicas. A client can do so in any order. Each
chunkserver will store the data in an internal LRU buffer cache until the data is used or aged
out. By decoupling the data flow from the control flow, we can improve performance by
scheduling the expensive data flow based on the network topology regardless of which
chunkserver is the primary.
4)“Once all the replicas have acknowledged receiving the data, the client sends a write request
to the primary. The request identifies the data pushed earlier to all of the replicas. The
primary assigns consecutive serial numbers to all the mutations it receives, possibly from
multiple clients, which provides the necessary serialization. It applies the mutation to its own
local state in serial number order.
5)“The primary forwards the write request to all secondary replicas. Each secondary replica
applies mutations in the same serial number order assigned by the primary.
6)“The secondaries all reply to the primary indicating that they have completed the operation.
7)“The primary replies to the client. Any errors encountered at any of the replicas are reported
to the client. In case of errors, the write may have succeeded at the primary and an arbitrary
subset of the secondary replicas. (If it had failed at the primary, it would not have been
assigned a serial number and forwarded.) The client request is considered to have failed, and
the modified region is left in an inconsistent state. Our client code handles such errors by
retrying the failed mutation. It will make a few attempts at steps (3) through (7) before falling
back to a retry from the beginning of the write.”

Data Flow

* Independent of control flow
— client sends data to nearest replica
—replica sends data to nearest remaining replica
—etc.
— data is pipelined

Cs 138 XVII-11 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Atomic Record Appends

« Data appended to end of file
— atomic in spite of concurrency
— must fit in a chunk
- limited to "4 chunk size

- if doesn’t fit, chunk is padded out to chunk
boundary and data put in next chunk

+ applications know to skip over padding

CS 138 XVII-12 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Append Details

* Client pushes data to all replicas

* Client issues record-append request to
primary
* Primary checks to make sure data fits in
chunk
— if not, primary deletes data and adds padding,
tells secondaries to do likewise, tells client to
start again on next chunk
— otherwise primary writes data at end of file and

tells secondaries to do likewise at same file
offset

CS 138 XVII-13 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

More Details

+ Append could fail at a replica
— perhaps replica crashed
— new replica enlisted

* Client retries operation

— duplicate entry at replicas where original
succeeded

- client must detect duplicates

Cs 138 XVII-14 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Snapshots

* Quick file snapshots using copy-on-write
— snapshot operation logged
— leases recalled
— metadata copied
- reference count on chunks incremented

— first mutation operation on each chunk causes
a copy to be made

- reference count of original decremented

CS 138 XVII-15 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Replica Placement

CS 138 XVIl-16 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The discussion below is copied from the aforementioned paper, “The Google File System.”

“A GFS cluster is highly distributed at more levels than one. It typically has hundreds of
chunkservers spread across many machine racks. These chunkservers in turn may be
accessed from hundreds of clients from the same or different racks. Communication between
two machines on different racks may cross one or more network switches. Additionally,
bandwidth into or out of a rack may be less than the aggregate bandwidth of all the machines
within the rack. Multi-level distribution presents a unique challenge to distribute data for
scalability, reliability, and availability.

“The chunk replica placement policy serves two purposes: maximize data reliability and
availability, and maximize network bandwidth utilization. For both, it is not enough to spread
replicas across machines, which only guards against disk or machine failures and fully
utilizes each machine’s network bandwidth. We must also spread chunk replicas across
racks. This ensures that some replicas of a chunk will survive and remain available even if an
entire rack is damaged or offline (for example, due to failure of a shared resource like a
network switch or power circuit). It also means that traffic, especially reads, for a chunk can
exploit the aggregate bandwidth of multiple racks. On the other hand, write traffic has to flow
through multiple racks, a tradeoff we make willingly.”

Chubby

+ Coarse-grained distributed lock service
File system for small files

Election service for determining primary
nodes

« Name service

CS 138 XVII-17 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Chubby is discussed in http://static.googleusercontent.com/external_content/
untrusted_dlcp/research.google.com/en/us/archive/chubby-o0sdiO6.pdf. These bullets come
from the textbook, page 940.

Lock Files

* File creation is atomic

— two processes attempt to create files of the
same name concurrently

- one succeeds, one fails
* Thus the file is the lock

CS 138 XVII-18 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This is approximately what Chubby does. For exact details, see the textbook.

Electing a Leader

* Participants vie to create /group/leader

— whoever gets there first, creates file and stores
its ID inside

— others see that file exists and agree that the
value in the file identifies the leader

CS 138 XVII-19 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

More

* Processes may register to be notified of file-

related events

— file contents are modified

— file deleted
— etc.
» Caching

— clients may cache files
— a file’s contents aren’t changed until all caches

are invalidated

Cs 138

XVII-20 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

MapReduce

* map

— for each pair in a set of key/value pairs,
produce a set of new key/value pairs

* reduce
— for each key

- look at all the values associated with that
key and compute a smaller set of values

CS 138 XVII-21 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

A paper discussing MapReduce can be found at http://labs.google.com/papers/
mapreduce.html.

Example

map (String key, String value) {
// key: document name
// value: document contents
for each word w in value
EmitIntermediate(w, 1);

reduce (String key, Iterator values) {
// key: a word
// values: a list of counts
for each v in values
result += v;
Emit (result) ;

CS 138 XVII-22 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This example is from the aforementioned paper. It counts the number of occurrences of
each word in a collection of documents.

Implementation Sketch (1)
split 0
split1 N~ @
split M-1
Input (on
GFS i i
) map intermediate el output files
. files (on local]
phase: . phase: (on GFS)
M K disks) R K
workers partitioned workers
into R pieces
CS 138 XVII-23 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This slide is taken from the aforementioned paper on map reduce.

I-23

Implementation Sketch (2)

* Map’s input pairs divided into M splits
—stored in GFS
* Output of Map/Input of Reduce divided into R
pieces

* One master process is in charge: farms out
work to W (<< M+R) worker machines

CS 138 XVII-24 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Implementation Sketch (3)

* Master partitions splits among some of the
workers

— each worker passes pairs to user-supplied
map function

— results stored in local files
- partitioned into pieces
* e.g., hash(key) mod R
—remaining workers perform reduce tasks
- the R pieces are partitioned among them

- place remote procedure calls to map
workers to get data

- put output in GFS

CS 138 XVII-25 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Distributed Grep

* Map function

— emits a line if it matches pattern
* Reduce function

— identity function

Cs 138

XVIl-26 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Count of URL Access Frequency

* Map function
— processes logs of web-page requests
—emits: <URL, 1>

* Reduce function
— adds together all values for same URL
— emits <URL, total count>

Cs 138

XVII-27 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Reverse Web-Link Graph

* Map function

— outputs <target, source> for each link to target
URL found in source

* Reduce function

— concatenates list of all source URLs
associated with given target

— emits <target, list(source)>

CS 138 XVII-28 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Distributed Sort

* Map function
— extracts key from each record
— emits <key, record>

* Reduce function
— emits all pairs unchanged

- depends on partitioning properties to be
described

CS 138 XVII-29 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Details (1)

1) Input files split into M pieces, 16 MB-64MB
each

2) A number of worker machines are started

— master schedules M map tasks and R reduce
tasks to workers, one task at a time

— typical values:
- M=200,000
- R=5000
- 2000 worker machines

3) Worker assigned a map task processes the
corresponding split, calling the map function
repeatedly; output buffered in memory

XVII-30 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Details (2)

4) Buffered output written periodically to local
files, partitioned into R regions by
partitioning function

— locations sent back to master
5) Reduce tasks
— each handles one partition
— accesses data from map workers via RPC
— datais sorted by key

— all values associated with each key are
passed collectively to reduce function

— result appended to GFS output file (one per
partition)

CS 138 XVII-31 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Committing Data

* Map task
— output kept in R local files

— locations send to master only on task
completion

* Reduce task
— output stored on GFS using temporary name

— file atomically renamed on task completion (to
final name)

CS 138 XVII-32 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Coping with Failure (1)

+ Master maintains state of each task
—idle (not started)
—in progress
— completed

+ Master pings workers periodically to
determine if they’re up

Cs 138

XVII-33 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Coping with Failure (2)

* Worker crashes
— in-progress tasks have state set back to idle
- all output is lost
- restarted from beginning on another worker
— completed map tasks
- all output lost
- restarted from beginning on another worker

- reduce tasks using output are notified of
new worker

CS 138 XVII-34 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Coping with Failure (3)

* Worker crashes (continued)
— completed reduce tasks
- output already on GFS
- no restart necessary
* Master crashes
— could be recovered from checkpoint
—in practice
- master crashes are rare
- entire application is restarted

CS 138 XVII-35 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Performance: Data Transfer Rate

30000 —

Input (MB/s)
> 8
S g
| l

(=)

T T T 1
20 40 60 8 100

Seconds

« grep through 10'° 100-byte records for rare 3-
character pattern

CS 138 XVII-36 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This figure is from the aforementioned paper on map reduce. 15,000 map tasks and 1
reduce task were used. 1800 computers were employed.

20000 =
- Done 20000 Done 2000 Done
é 15000 15000 15000
=100 10000 - 10000
-]
E' 5000 5000 5000 | N
0 T T 0 T T 0 v‘\] T T
500 1000 500 1000 500 1000
20000 20000 - 20000
@
E 15000 | 15000 15000 |
5 10000 10000 10000
=]
2 5000 5()00-/\ 5000 _A
=
I VAN P\ . o jdecal , . VV/LI/\ [
500 1000 500 1000 500 1000
_ 20000 - 20000 20000 —
@
§ 15000 15000 15000
5 10000+ 10000 ~ 10000
2 5000
s 5000 o M 5000 -
=
LAY L7 S W 0 : : 4 AN SN
! y 500 1000) !
500 1000 500 1000
Seconds Seconds Seconds
(a) Normal execution (b) No backup tasks (c) 200 tasks killed
CS 138 XVII-37 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This figure is also from the aforementioned paper. It shows the results of sorting 10'° 100-
byte records, with 15,000 map tasks and 4000 reduce tasks running on 1800 computers. The
top row shows the rate at which input is read; the second row shows the rate at which data is
transferred from map tasks to reduce tasks, and the last row shows the rate at which final
output is produced. The “Normal execution” column refers to the use of extra “backup tasks”
which are used to deal with stragglers: a few map or reduce tasks take far longer than others,
perhaps because of hardware problems. When a MapReduce application is close to
completion, the master schedules a few backup tasks to execute the remaining in-progress
tasks redundantly. The outputs of whichever finish first — the backup tasks or the original
tasks — are used first. The middle column shows how useful this is: without the backup
tasks it took far longer to run. The last column shows how quickly the system dealt with the
loss of 200 tasks.

Counterpoint

+ See
http://www.databasecolumn.com/2008/01/
mapreduce-a-major-step-back.html

— MapReduce: the opinion of the database
community:

1) a giant step backward in the programming paradigm for
large-scale data intensive applications

2) a sub-optimal implementation, in that it uses brute force
instead of indexing

3) not novel at all — it represents a specific implementation
of well known techniques developed nearly 25 years ago

4) missing most of the features that are routinely included
in current DBMS

5) incompatible with all of the tools DBMS users have come
to depend on

CS 138 XVII-38 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

A more recent version of these arguments, taking into account the response of the map-
reduce people (next slide), can be found at http://database.cs.brown.edu/papers/
stonebraker-cacm2010.pdf.

Countercounterpoint

1) MapReduce is not a database system, so
don’t judge it as one

2) MapReduce has excellent scalability; the
proof is Google’s use

3) MapReduce is cheap and databases are
expensive

4) The DBMS people are the old guard trying to
defend their turf/legacy from the young turks

CS 138 XVII-39 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

These points are from http://www.databasecolumn.com/2008/01/mapreduce-
continued.html.

