


Servers divide their files up into disjoint collections called file systems, each of which 
contains a rooted directory tree naming all of its members. Servers, as specified in local 
configuration files, specify which file systems, or subtrees within a file system, are 
available to which clients. A client can then mount a remote file system. This entails 
superimposing the root of the remote file system on top of a directory in the client’s 
current naming tree. The root of the remote file system (the mounted file system) 
effectively replaces the mounted-on directory. Thus the remote file system is attached to 
the client’s naming tree at the mounted-on directory (and the previous contents of that 
directory are invisible as long as the remote file system remains mounted). The mount 
protocol provides some security (by restricting which clients are allowed to mount a file 
system) and gives the client node the means for fitting remote file systems into its file-
system name space. 





The file handle is used to identify the file to the server for all subsequent operations, 
including reading and writing. It consists of three items: the remote file-system ID, the 
file ID (relative to the file system — for example, this might be the inode number), and a 
generation number. The first two items might seem sufficient to identify a file, but the 
third component is necessary: Suppose that you have opened a file, but, while you have 
it open, someone else deletes the file. Furthermore suppose that a new file is created that 
reuses the inode of the original file. If the file handle consisted only of the remote file-
system ID and file ID, there would be no way for it to distinguish between the old file 
(which no longer exists) and the new file (which has the same file ID (or inode) as the old 
file). The generation number is an integer that is stored with the inode and that is 
incremented when the file associated with the inode is deleted. Thus each use of the 
same inode (and hence file ID) has a different generation number, and thus, in our 
example, the server can determine that the file referred to by your file handle doesn’t 
exist any more. NFS’s straightforward way of telling this to you is to print the message 
“stale file handle” on your console. 



This slide shows a stylized directory hierarchy on a server, split into its component file 
systems. From the point of view of applications running directly on the server, there is 
just one integrated tree. However, the server exports the file systems independently to its 
clients. 



Here a client has mounted the server file system rooted at /B onto its directory /C2. 
Thus, from the client’s perspective, the previous contents of directory C2 is replaced with 
the server’s /B. On the server, one could follow the path /B/F/K/S, but this path crosses 
a mount point on the server. The corresponding path on the client would start: /C2/F/K. 
However, the client would not see a file system mounted at K — the mount point exists 
only on the server. 



Now the client mounts the server’s file system /B/F/K on the client’s directory /C2/F/
K; the client can now follow the path /C2/F/K/S. 











To provide something resembling a global namespace, the network information system 
(NIS, originally known as “Yellow Pages,” until Sun discovered the name was 
trademarked by someone else) is used to hold information (in the form of an NIS map) 
describing the layout of the namespace, in particular which servers provide which file 
systems and where they should be mounted. NIS provides this information in the form of 
a completely replicated distributed database. 

Automounting is the notion of having clients delay mounting remote file systems until 
they’re needed, then using information from NIS to determine what should be mounted. 





DFS (DCE’s distributed file system) provides a cell-wide file system (a cell is a 
potentially large collection of machines under the same administration), organized into a 
cell-wide directory hierarchy. This hierarchy is logically partitioned into pieces called 
filesets. These filesets are stored on the DFS servers, using the server’s local file systems 
(e.g. FFS). This mapping of fileset to server is stored in a distributed database known as 
the fileset location database (FLDB). 

Clients contact the FLDB to determine the locations of filesets. To minimize network 
use, server load, and average client access time, the clients buffer portions of files on the 
clients’ local disks. 



Filesets are named in a space that is independent of the directory hierarchy. This 
fileset name space is mapped via a distributed database called the fileset location 
database into the servers that manage them. 

DFS mount points are implemented as symbolic links, where the value of the link is 
the name of the fileset mounted in the directory. A client traversing such a mount point 
looks up the fileset name in the fileset location database, which tells it which server 
hosts the fileset. The client then contacts that server to follow the rest of the path. 

The effect is that DFS provides a single global name space that is shared by all clients. 
Unlike NFS, the name space isn’t assembled on each client, but is built into the directory 
hierarchy. 



DFS maintains a cache of recent file requests on disk (or, for diskless workstations, in 
memory). DFS file servers hand to a client an object known as a token (the dark ovals in 
the slide), which informs a client that its cached copy of the file (within a range of bytes) 
is (still) valid. There are a number of different types of tokens, e.g. read tokens and write 
tokens, depending upon what the client is doing with the file. As long as the client’s 
cache manager holds that token, operations on the file can be satisfied locally without 
any network requests for data. Tokens are revoked when a request comes into the file 
server that is incompatible with the tokens held by clients, e.g. a write request that 
changes data on the server while clients hold read tokens for the same file and same byte 
range. 

Files are copied between DFS file servers and DFS clients in units called chunks. The 
default chunk size for clients with caches stored on disk is 64K, but it can range from 8K 
to 256K. 



DFS uses tokens to ensure Unix single-system semantics across a distributed 
environment. 

A token can be thought of as a certificate, manufactured by the file server and 
delivered to the client, that gives the client a set of rights to perform certain specified 
operations in its cache. Tokens contain a type field that specifies the particular operation 
(DATA_READ, DATA_WRITE, STATUS_READ, STATUS_WRITE, LOCK_READ, 
LOCK_WRITE, OPEN_EXCLUSIVE, OPEN_READ, OPEN_WRITE, OPEN_SHARED, 
OPEN_DELETE, OPEN_PRESERVE, SPOT_HERE, SPOT_THERE). In addition, DATA and 
LOCK tokens contain a byte range and apply only to data within that range.  

Two tokens are said to be compatible if they can be held by different clients 
simultaneously, for example, two DATA_READ tokens for the same range of bytes in the 
same file. Tokens are said to be incompatible if the semantics of the two tokens conflicts. 
For example, if a client requests a DATA_WRITE token for a particular range of bytes in a 
file, any outstanding DATA_READ or DATA_WRITE tokens must first be revoked and 
returned to the file server. 



In the next few slides we go through an example in which two clients are sharing a file. 
At the moment, both clients have read tokens for a portion of the file in their caches and 
can read without interference. However, one of the clients desires to modify the file. In 
response to the user’s write request, the DFS code on the client sends a request to the 
server asking for a write token. 



If one client is to be modifying the file, then, for consistency, no other clients should be 
reading the file. Thus the server sends a revoke request to the other client, demanding 
that it give back its read token for the file. 



The server now grants write access to the original client by giving it a write token for 
the desired portion of the file. 



Now the other client decides to read from the file again. 



The server must now send a revoke request to the first client, asking for both the write 
token and the modified portion of the file. 



Finally, a new read token is granted to the second client. 



Since DFS must maintain a lot of state information (e.g., which tokens are out), its 
crash recovery is much more complicated than Basic NFS’s. Three independent things 
could go wrong: 

•  A client could crash: thus the server will need to reclaim all the tokens that were 
held by the client. 

•  A server could crash: token information is not held in non-volatile storage. It must 
somehow be recreated when the server comes back up. 

•  The network could fail: though both client and server remain up, neither can 
communicate with the other. 

There are two features that we would like DFS to provide: 

•  The client should be able to use its cache even if the server is down or not 
accessible. 

•  The server should be able to revoke tokens from a client if the client is down or not 
accessible. 

If either the server or the client has crashed, then providing these two features is not 
difficult. But if a network outage occurs and the server and client become separated from 
each other but both continue to run, then the two features conflict with each other. 

DFS is forced to use a compromise approach (there is no other alternative). If the client 
cannot contact the server, then it will continue to use its cache until its tokens expire — 
they are typically good for two hours, though they are normally refreshed every minute 
or so. However, if the server is actually up and running, but is somehow disconnected 
from the client, then the server might want to revoke the tokens. If the server has no 
need to revoke tokens, then it does nothing. But if some other client that is 
communicating with the server attempts an operation that conflicts with the 
unresponsive client’s tokens, then the server is forced to take action. 



If the server hasn’t heard from the client for a few minutes, then it can unilaterally 
revoke the client’s tokens. This means that when the client does resume communication 
with the server, it may discover that not only are some of its tokens no longer good, but 
some of its modifications to files may be rejected. 

To protect client applications from such unexpected bad news, the client-side DFS 
code will cause attempts to modify a file to fail if it has discovered that the server is not 
responding. A client program can take measures to deal with this problem by repeatedly 
retrying operations until the server comes back to life. 



Another way of stating the last bullet is that it’s the weak semantics of (stateless) 
NFSv2 and v3 that makes the hard mount possible. 







Firewalls present a challenge to the earlier versions of NFS: as explained in the slide, 
NFS relies on dynamically chosen port numbers, which are likely to be blocked by 
firewalls. (Note that this doesn’t apply to the NFS protocol itself, which uses the well 
known port number 2049, which firewalls can be configured to accept.) Not only must 
client requests to the server use dynamic port numbers, but the NLM_GRANTED 
callback procedure (used in the network lock manager protocol) requires that the server 
contact the client via a dynamic port. 













Note that NFSv4 is to work with both Unix and Windows clients. 









As far as client 1 is concerned, the server crashed at step 2 (since the client couldn’t 
contact it) and didn’t restart until step 5. If the server, at step 6, has no information 
about its lock state prior to the crash, it cannot recognize that client 1 should not be 
allowed to reclaim its lock in step 6. 








