Distributed File Systems (Part 2)

CS 138

XVI-1 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

NFS Mount Protocol

Server

\
S

Approved List

CS 138 XVI-2 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Servers divide their files up into disjoint collections called file systems, each of which
contains a rooted directory tree naming all of its members. Servers, as specified in local
configuration files, specify which file systems, or subtrees within a file system, are
available to which clients. A client can then mount a remote file system. This entails
superimposing the root of the remote file system on top of a directory in the client’s
current naming tree. The root of the remote file system (the mounted file system)
effectively replaces the mounted-on directory. Thus the remote file system is attached to
the client’s naming tree at the mounted-on directory (and the previous contents of that
directory are invisible as long as the remote file system remains mounted). The mount
protocol provides some security (by restricting which clients are allowed to mount a file
system) and gives the client node the means for fitting remote file systems into its file-
system name space.

File Handles

» Servers provide opaque file handles to clients
to refer to files

— contents mean nothing to clients
— identify files on server

» Clients contact server via mount protocol to
obtain file handles of roots of exported file
systems

CS 138 XVI-3 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

File Handle Contents

File-System ID File ID Generation #

* File-System ID

— which server file system
* File ID

— which file within file system
* Generation #

— guards against inode reuse

CS 138 XVI-4 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The file handle is used to identify the file to the server for all subsequent operations,
including reading and writing. It consists of three items: the remote file-system ID, the
file ID (relative to the file system — for example, this might be the inode number), and a
generation number. The first two items might seem sufficient to identify a file, but the
third component is necessary: Suppose that you have opened a file, but, while you have
it open, someone else deletes the file. Furthermore suppose that a new file is created that
reuses the inode of the original file. If the file handle consisted only of the remote file-
system ID and file ID, there would be no way for it to distinguish between the old file
(which no longer exists) and the new file (which has the same file ID (or inode) as the old
file). The generation number is an integer that is stored with the inode and that is
incremented when the file associated with the inode is deleted. Thus each use of the
same inode (and hence file ID) has a different generation number, and thus, in our
example, the server can determine that the file referred to by your file handle doesn’t
exist any more. NFS’s straightforward way of telling this to you is to print the message
“stale file handle” on your console.

Server File Systems

\
1
|
|
1

- - -

1 \ 1 A TRA

rY -y
! I, A2\ \ 1,2=
! QO WD A ' @ EO@ .
l
,

g g, A \ L=l =T by .
7
,/ \\ 1] \
\
‘@ @ JD @
,' \ 1 “
\ /
[OO DO, 1@ O@ GO
____________________ -
XVI-5 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

CS 138

This slide shows a stylized directory hierarchy on a server, split into its component file
systems. From the point of view of applications running directly on the server, there is
just one integrated tree. However, the server exports the file systems independently to its

clients.

Client vs. Server Mount Points (1)

e D

mount server:/B /C2

CS 138 XVI-6 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

Here a client has mounted the server file system rooted at /B onto its directory /C2.
Thus, from the client’s perspective, the previous contents of directory C2 is replaced with
the server’s /B. On the server, one could follow the path /B/F/K/S, but this path crosses
a mount point on the server. The corresponding path on the client would start: /C2/F/K.

However, the client would not see a file system mounted at K — the mount point exists
only on the server.

Client vs. Server Mount Points (2)

mount server:/B /C2
mount server:/B/F/IK /C2/F/IK

CS 138 XVI-7 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

Now the client mounts the server’s file system /B/F/K on the client’s directory /C2/F/
K; the client can now follow the path /C2/F/K/S.

Local vs. Global Namespace

* Local namespace

— each host configures its own file-system
namespace

— NFS clients each mount the appropriate remote
file systems

* Global namespace
— all hosts share the same namespace
—not done in early NFS

CS 138 XVI-8 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Mount Protocol Problems

* Local namespaces don’t work

+ Achieve global name space by having each
client mount everything consistently

+ giving each client a table listing all possible
mounts is administratively difficult

+ performing all possible mounts is time
consuming

* mounting is a “heavyweight” operation

CS 138

XVI-9 Copyright © 2016 Thomas W. Doeppner. All rights rese!

rved.

Rather than this ...

jordan

george

twd vivek junyang

rodrigo jake avd ugur

Cs 138

XVI-10

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

... this

dev

etc

automount
database

Cs 138

XVI-11

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Automounting: 2000

« Maintain description of global namespace in
global database: NIS

* Do mounts only when needed
+ Automount times out after period of unuse

CS 138 XVI-12 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

To provide something resembling a global namespace, the network information system
(NIS, originally known as “Yellow Pages,” until Sun discovered the name was
trademarked by someone else) is used to hold information (in the form of an NIS map)
describing the layout of the namespace, in particular which servers provide which file
systems and where they should be mounted. NIS provides this information in the form of
a completely replicated distributed database.

Automounting is the notion of having clients delay mounting remote file systems until
they’re needed, then using information from NIS to determine what should be mounted.

Automounting: 2016

* Global namespace maintained in LDAP
database

— lightweight directory access protocol
- vendor neutral

— everything mounted at boottime
- fewer, but larger, file systems

— no timeout

CS 138 XVI-13 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

DCE'sDFS
—

system \.,m ‘ Sy

(oo || [osrt | [wa | [[wotit]| [[Cace | L J L J
I bin I | bin | | usr | -

— =

>
99@99
)

M
© Ay ~ ~
—
. J { J FLDB
> - ——
;e
>
LN N
O — FLDB -
M1
S N
CS 138 XVI-14 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

DFS (DCE’s distributed file system) provides a cell-wide file system (a cell is a
potentially large collection of machines under the same administration), organized into a
cell-wide directory hierarchy. This hierarchy is logically partitioned into pieces called
filesets. These filesets are stored on the DFS servers, using the server’s local file systems
(e.g. FFS). This mapping of fileset to server is stored in a distributed database known as
the fileset location database (FLDB).

Clients contact the FLDB to determine the locations of filesets. To minimize network
use, server load, and average client access time, the clients buffer portions of files on the
clients’ local disks.

DFS Mount Points

root.cell
7/ \ 1 /Z \
bin.sol7[|bin.osf1| Iusers.twdl proj.motif| | proj.dce

¥

osf1 | twd | |motif| | dce |

T
i

|bin||usr|

g
5

aN

binsol7 | —— | —)
bin.osf1 users.twd proj.motif proj.dce

FLDB

FLDB

FLDB

CS 138 XVI-15 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Filesets are named in a space that is independent of the directory hierarchy. This
fileset name space is mapped via a distributed database called the fileset location
database into the servers that manage them.

DFS mount points are implemented as symbolic links, where the value of the link is
the name of the fileset mounted in the directory. A client traversing such a mount point
looks up the fileset name in the fileset location database, which tells it which server
hosts the fileset. The client then contacts that server to follow the rest of the path.

The effect is that DFS provides a single global name space that is shared by all clients.
Unlike NF'S, the name space isn’t assembled on each client, but is built into the directory
hierarchy.

Strict Consistency in DES_

M1
o =
[R A
oD e —
| sol7 osf1 twd motif dce |
S~ v
Con] |[e] T —
= =
e N 4 Kt
vfﬂ —
-— -— ——
& S
S
. ee L e —
— —)
. &
S~~~ S~~~

CS 138 XVI-16 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

DFS maintains a cache of recent file requests on disk (or, for diskless workstations, in
memory). DFS file servers hand to a client an object known as a token (the dark ovals in
the slide), which informs a client that its cached copy of the file (within a range of bytes)
is (still) valid. There are a number of different types of tokens, e.g. read tokens and write
tokens, depending upon what the client is doing with the file. As long as the client’s
cache manager holds that token, operations on the file can be satisfied locally without
any network requests for data. Tokens are revoked when a request comes into the file
server that is incompatible with the tokens held by clients, e.g. a write request that
changes data on the server while clients hold read tokens for the same file and same byte
range.

Files are copied between DFS file servers and DFS clients in units called chunks. The
default chunk size for clients with caches stored on disk is 64K, but it can range from 8K
to 256K.

DFS Tokens (1)

. -
‘ ~—)
system m projects ——
| sol7 osf1 twd motif dce
S~ N—
[bin | | [oin] [Cusr] > I >
=£ -
R Kt
C Yy D
. =
- — File A: File B: e e
Client Read:0-4095 Write:0-512
N~

FLDB

e FLDB -
File A: File B: reon) ——
Read:0-4095 / \Write:513-4096 — 5
v

CS 138 XVI-17 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

DFS wuses tokens to ensure Unix single-system semantics across a distributed
environment.

A token can be thought of as a certificate, manufactured by the file server and
delivered to the client, that gives the client a set of rights to perform certain specified
operations in its cache. Tokens contain a type field that specifies the particular operation
(DATA_READ, DATA_WRITE, STATUS_READ, STATUS_WRITE, LOCK_READ,
LOCK_WRITE, OPEN_EXCLUSIVE, OPEN_READ, OPEN_WRITE, OPEN_SHARED,
OPEN_DELETE, OPEN_PRESERVE, SPOT_HERE, SPOT_THERE). In addition, DATA and
LOCK tokens contain a byte range and apply only to data within that range.

Two tokens are said to be compatible if they can be held by different clients
simultaneously, for example, two DATA_READ tokens for the same range of bytes in the
same file. Tokens are said to be incompatible if the semantics of the two tokens conflicts.
For example, if a client requests a DATA_WRITE token for a particular range of bytes in a
file, any outstanding DATA_READ or DATA_WRITE tokens must first be revoked and
returned to the file server.

DFS Tokens (2)

system

[Csor osf1

projects ‘

motif dce

S
File A:
Read:0-4095

N~ O
D -—

M~ -FLDB

: File A - —

Client y FLDB
Read:0-4095 -

CS 138 XVI-18 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

In the next few slides we go through an example in which two clients are sharing a file.
At the moment, both clients have read tokens for a portion of the file in their caches and
can read without interference. However, one of the clients desires to modify the file. In
response to the user’s write request, the DFS code on the client sends a request to the
server asking for a write token.

DFS Tokens (3)

e ject:
system projects| O O
[Csorr osfl [[wa] motif dce |

bin bin usr < < >

File A:
Read:0-4095 ‘LDB
—

XVI-19 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

[2]

(2]

-

w

®
-
[
o
]

If one client is to be modifying the file, then, for consistency, no other clients should be
reading the file. Thus the server sends a revoke request to the other client, demanding
that it give back its read token for the file.

DFS Tokens (4)
Led

[Csor osf1 [[wa] motif dce

bi bi —
in in usr

<
v N~ —

, —
N~
/\
i =

File A: File A: -

Read:0-4095 / \ Write:0-4095 B (T -

_/

cs 138 XVI-20 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

The server now grants write access to the original client by giving it a write token for
the desired portion of the file.

DFS Tokens (5)
Led

[Csor osf1 [[wa] motif dce

bin bin usr

aa(a

M W]

v N~ — N~ —

—

File A: File A: ——

Read:0-4095 / \ Write:0-4095 - - -
FLDB -

XVI-21 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Now the other client decides to read from the file again.

DFS Tokens (6)
Led

[Csor osf1 [[wa] motif dce

bin bi S| D
i in usr < >

<

= —
N~
/\
i =

File A: File A: D

Read:0-4095 / \ Write:0-4095 B (T -

_/

cs 138 XVI-22 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

The server must now send a revoke request to the first client, asking for both the write
token and the modified portion of the file.

DFS Tokens (7)

‘W“/\"m‘
+

[Csor osf1

[[wa] motif

dce

bin bin usr

File A:
Read:0-4095
File A:
Read:0-4095

Grant(A, read, 0-4095

99(99
)

5

FLDB

XVI-23 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Finally, a new read token is granted to the second client.

DFS Crash Recovery
Client
@ 5
CS 138 XVI-24 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Since DFS must maintain a lot of state information (e.g., which tokens are out), its
crash recovery is much more complicated than Basic NFS’s. Three independent things
could go wrong:

¢ A client could crash: thus the server will need to reclaim all the tokens that were
held by the client.

* A server could crash: token information is not held in non-volatile storage. It must
somehow be recreated when the server comes back up.

* The network could fail: though both client and server remain up, neither can
communicate with the other.
There are two features that we would like DFS to provide:

e The client should be able to use its cache even if the server is down or not
accessible.

* The server should be able to revoke tokens from a client if the client is down or not
accessible.

If either the server or the client has crashed, then providing these two features is not
difficult. But if a network outage occurs and the server and client become separated from
each other but both continue to run, then the two features conflict with each other.

DFS is forced to use a compromise approach (there is no other alternative). If the client
cannot contact the server, then it will continue to use its cache until its tokens expire —
they are typically good for two hours, though they are normally refreshed every minute
or so. However, if the server is actually up and running, but is somehow disconnected
from the client, then the server might want to revoke the tokens. If the server has no
need to revoke tokens, then it does nothing. But if some other client that is
communicating with the server attempts an operation that conflicts with the
unresponsive client’s tokens, then the server is forced to take action.

DFS Crash Recovery
(notes continued)
Client
@ C Yy
CS 138 XVI-25 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

If the server hasn’t heard from the client for a few minutes, then it can unilaterally
revoke the client’s tokens. This means that when the client does resume communication
with the server, it may discover that not only are some of its tokens no longer good, but
some of its modifications to files may be rejected.

To protect client applications from such unexpected bad news, the client-side DFS
code will cause attempts to modify a file to fail if it has discovered that the server is not
responding. A client program can take measures to deal with this problem by repeatedly
retrying operations until the server comes back to life.

DFS Recovery Problems

« Client application must participate!

— must recognize that operation returns “timed-
out” error

— must retry

* Due to semantics of tokens, it isn’t feasible to
provide NFS-style hard mount

CS 138 XVI-26 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Another way of stating the last bullet is that it’s the weak semantics of (stateless)
NFSv2 and v3 that makes the hard mount possible.

NFS Version 4

+ Better than ...
— NFS version 2
— NFS version 3
— CIFS
—DFS
— (why aren’t we running it?)

CS 138

XVI-27 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

NFSv4: Why?

* Problems with NFSv3
— firewalls
— coordination
— pathological network problems
— security
— high performance
— no support for Windows clients

CS 138 XVI-28 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Firewall Issues

* Port numbers
— NFS (v2 and v3) protocol uses 2049

— mount, network lock manager, and network status
manager protocols use dynamic ports
- firewalls often allow access only to certain standard ports

- it may be impossible to access dynamic ports from
outside a firewall

+ Client and Server behind (different) firewalls

CS 138 XVI-29 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Firewalls present a challenge to the earlier versions of NFS: as explained in the slide,
NFS relies on dynamically chosen port numbers, which are likely to be blocked by
firewalls. (Note that this doesn’t apply to the NFS protocol itself, which uses the well
known port number 2049, which firewalls can be configured to accept.) Not only must
client requests to the server use dynamic port numbers, but the NLM_GRANTED
callback procedure (used in the network lock manager protocol) requires that the server
contact the client via a dynamic port.

Server State

* It’s required!
— mandatory locks
* Hierarchy of state
— client information
— open file information
— lock information

CS 138 XVI-30 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

Open State

\ 4

Client ID .

Client ID state >

\ r
recor

I

open_stateid3 s open_state1
| open owner 2
record

open_stateid1 — | \ open_state3
open_state1

Client Server

open_state2

[*] [*]
T T
@ ®
= =}
o o
3 3
=} =}
® ®
= =
N -

i)

CS 138 XVI-31 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Locking

* Requires additional state on server
— must be reestablished if server crashes
— must be removed if client crashes
+ For mandatory locking, read/write calls
require holding of appropriate locks

— client must supply “lock owner” with lock requests
and read/write requests

— server must verify that read/write caller owns lock
* Blocking Locks

— client application must be notified when lock is
available

CS 138 XVI-32 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Implementing Locks Right ...

Handle both Unix and Windows
Get the semantics right

— both advisory and mandatory

— who owns a lock?
Handle failures sanely

Make it efficient
— client-side caching where possible

Make it doable
— if lock not currently available

- server might not be able to send callback
« client polls server

CS 138 XVI-33 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

Mandatory Locks (1)

» Just like advisory locks, but you can’t ignore
them

—require state on server

— state is recovered after a server crash
* Nothing more to say ...

—(wrong ...)

CS 138

XVI-34 Copyright © 2016 Thomas W. Doeppner. All rights res:

erved.

* Unix semantics
— locks belong to process

- not shared among
processes

— locks apply to file

- doesn’t matter which
file descriptor is used

— locks disappear on close of
any file descriptor for file

— to turn on mandatory locks:
- turn on set-gid bit

- turn off group-execute
permission bit

Mandatory Locks (2)

« Windows semantics

— locks belong to process

- not shared among
processes

— locks apply to file
descriptor (Windows file
handle)

- matters which one is
used

— locks disappear only when
appropriate file handle is
closed

— all locks are mandatory

Cs 138 XVI-35

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Note that NFSv4 is to work with both Unix and Windows clients.

Lock State

Client ID state >

\‘l lock state1 | , e record

-———

y S - open owner 1

1
1
1
A 4 open_state2
\l lock state2 |

/
/ open_state1

I<I4-

open_state3

i

Server

CS 138

XVI-36

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

State Recovery

» Server crash recovery
— clients reclaim state on server

- grace period after crash during which no
new state may be established

» Client crash recovery

— server detects crash and nullifies client state
information on server

CS 138

XVI-37 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Coping with Non-
Responsiveness

* Leases
— locks are granted for a fixed period of time
- server-specified lease

— if lease not renewed before expiration, server
may (unilaterally) revoke locks and share
reservations

- most client RPCs renew leases
— clients must contact server periodically

- if clientid is rejected as stale, then server
has restarted

- server’s grace period is equal to lease
period

CS 138 XVI-38 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

Pathological Network Problems

1) Client 1 obtains a lock on a portion of a file

2) There’s a network partition such that client 1
and server can no longer communicate

3) The server crashes and restarts

4) Client 2 obtains a lock on the same portion

of the same file, modifies the file, and then
releases the lock

5) The server crashes and restarts and the
network partition is repaired

6) Client 1 recontacts the server and reclaims
its lock

CS 138 XVI-39 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

As far as client 1 is concerned, the server crashed at step 2 (since the client couldn’t
contact it) and didn’t restart until step 5. If the server, at step 6, has no information

about its lock state prior to the crash, it cannot recognize that client 1 should not be
allowed to reclaim its lock in step 6.

Coping ...

* Possibilities

1) server keeps all client state in non-volatile
storage

2) server keeps all client state in volatile storage

and refuses all reclaim requests (effectively
emulating CIFS)

3) something in between ...

CS 138 XVI-40 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Compromise

+ Keep enough client state in non-volatile memory to
know which clients were active at time of crash

— will honor reclaim requests from these clients
— will refuse reclaim requests from others

* What to keep:
—client ID

— the time of the client’s first acquisition of a share
reservation or lock after a server reboot or client
lease expiration

— a flag indicating whether the client’s most recent
state was revoked because of a lease expiration

CS 138 XVI-41 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Additional Issues

* Authentication

— poorly supported in NFSv3

— extensible (and well supported) in NFSv4
* Authorization

— Windows clients require ACLs

— NFSv4 supports Windows-like ACLs
» Parallel /10

— pNFS

CS 138

XVI-42 Copyright © 2016 Thomas W. Doeppner. All rights rese!

rved.

