

 This material is partially covered in Chapter 12 of Coulouris, Dollimore, Kindberg, and
Blair.

Note that in the typical distributed file system, servers are not replicated. However, the
data might be. In fact, one server, the “file server”, might handle meta data, and data
might be handled on other servers.

File systems are certainly important parts of general-purpose computer systems. They
are responsible for the storage of data (organized as files) and for providing a means for
applications to store, access, and modify data. Local file systems handle these chores on
individual computers; distributed file systems handle these chores on collections of
computers. In the typical design, distributed file systems provide a means for getting at
the facilities of local file systems. What is usually desired of a distributed file system is
that it be access transparent: programs access files on remote computers as if the files
were stored locally. This rules out approaches based on explicit file transfer, such as the
Internet’s FTP (file transfer protocol) and Unix’s rcp (remote copy).

(Note that the November 17 in question was in 2005.)

What we’re accustomed to with local file systems is that, in the event of a crash,
everything goes down. This is simple to deal with.

In a distributed system, if the server crashes, there is no inherent reason for clients to
crash as well. Assuming there was no damage done to the on-disk file system, client
processes might experience a delay while the server is down, but should be able to
continue execution once the server comes back up, as if nothing had happened. The
crash of a client computer is bad news for the processes running on that computer, but
should have no adverse effect on the server or on other client computers. We’d like the
effect to be as if the client processes on the crashed computer had suddenly closed all
their files and terminated.

NFS consists of three component protocols: a mount protocol for making collections of
files stored on servers available to client nodes, the NFS file protocol for accessing and
manipulating files and directories, and a network lock manager (NLM) for locking files
over the network and recovering lock state after failures.

An NFS server gives its clients access to one or more of its local file systems, providing
them with opaque identifiers called file handles to refer to files and directories. Clients
use a separate protocol, the mount protocol, to get a file handle for the root of a server file
system, then use the NFS protocol to follow paths within the file system and to access its
files, placing simple remote procedure calls to read them and write them. A third
protocol, the network lock manager protocol (NLM), was added later and may be used, if
desired, to synchronize access to files. All communication between client and server is
with ONC RPC.

Since NFS servers are stateless, the crash and restart of a client has no effect on them.
Thus client crash recovery involves no actions on NFS’s part.

Recovery from a server crash is easy for the server — it merely resumes processing
requests. The client is generally delighted when the server recovers; its concern is what
to do while the server is down.

Client machines may choose to “mount” NFS file systems in one of two ways: soft
mounts and hard mounts. With a soft mount, if the server crashes, then attempts to
access the down file system fail — a “timed-out” error code is returned. This is often not
terribly useful, since most applications are not equipped to deal with such problems. In
the other approach (the hard mount) if the server crashes, then clients repeatedly re-try
operations until the server recovers. This can try the patience of users, but it doesn’t
break applications.

The stateless approach clearly doesn’t work if one is concerned about locking files. For
this, NFS employs a separate lock protocol. Each participating machine runs two special
processes: a lock manager, typically known as the lock daemon, and a status monitor,
typically known as the status daemon. The lock daemons manage the locking and
unlocking of files; the status daemons help cope with crashes. When an application on a
client machine attempts to lock a remote file, it contacts the local lock manager which
places an RPC to the lock manager on the server, which locks it there.

If a client crashes, the server’s status daemon unlocks all of the files that the client
had locked. The only difficulty here is determining whether the client has crashed —
perhaps it is merely slow. The approach used in NFS is that the client, when it comes
back to life, announces to the server that it has been down. Of course, human
intervention may be required if the client is down for a long period of time.

If a server crashes, it loses all knowledge of which files are locked and by whom. So,
when it comes back up, it must ask the clients to tell it which files they had locked.
Upon receipt of this information, it restores its original state and resumes normal
operation.

Opportunistic locks are used by CIFS.

