Distributed File Systems (Part 1)

CS 138

XV-1 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Outline

* Basic concepts

* NFS version 2

« CIFS

+ DCE DFS

* NFS version 4

* CS Department: NFS + CIFS + GPFS

CS 138 XV-2 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

This material is partially covered in Chapter 12 of Coulouris, Dollimore, Kindberg, and
Blair.

Previous Scenario

Replica Replica
Manager Manager

Replica
Manager

Cs 138

XV-3 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

DFS Scenario

Data

File
Data| Server Data

Serve berver
[Data [

Server

ayoen

Cache

CS 138 XV-4 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

Note that in the typical distributed file system, servers are not replicated. However, the
data might be. In fact, one server, the “file server”, might handle meta data, and data

might be handled on other servers.

Distributed File Systems

CS 138 XV-5 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

File systems are certainly important parts of general-purpose computer systems. They
are responsible for the storage of data (organized as files) and for providing a means for
applications to store, access, and modify data. Local file systems handle these chores on
individual computers; distributed file systems handle these chores on collections of
computers. In the typical design, distributed file systems provide a means for getting at
the facilities of local file systems. What is usually desired of a distributed file system is
that it be access transparent: programs access files on remote computers as if the files
were stored locally. This rules out approaches based on explicit file transfer, such as the
Internet’s FTP (file transfer protocol) and Unix’s rcp (remote copy).

DFS Components

« Data state
— file contents
« Attribute state

— size, access-control info, modification time,
etc.

* Open-file state
— which files are in use (open)
— lock state

CS 138

XV-6 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Possible Locations

data
cache

data
open-file cache

state

Client local

N file system
open-file

state

data
cache

Server

open-file
state

Client

CS 138 XV-7 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

In Practice ...

+ Data state
— NFS
- weakly consistent
- less weak if program uses locks
— CIFS and DFS
- strictly consistent
* Lock state
— must be strictly consistent

CS 138 XV-8 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Thursday morning, November 17th
At 7:00 a.m.
Maytag, the department’s central file server, will be taken
down to kick off a filesystem consistency check.

Linux machines will hang.
All Windows users should log off.

Normal operation will resume by 8:30 a.m. if all goes well.
All windows users should log off before this time.

Questions/ ns to probl @cs.brown.edu

CS 138 XV-9 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

(Note that the November 17 in question was in 2005.)

Failures in a Local File System

Juslio juaio

Cachd

.

waysAg 94

Se
jual|d jusl|o

CS 138 XV-10 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

.

What we’re accustomed to with local file systems is that, in the event of a crash,
everything goes down. This is simple to deal with.

Distributed Failure

Client jualln

Cache

waysAg 94

Se
Client Client

CS 138 XV-1 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

In a distributed system, if the server crashes, there is no inherent reason for clients to
crash as well. Assuming there was no damage done to the on-disk file system, client
processes might experience a delay while the server is down, but should be able to
continue execution once the server comes back up, as if nothing had happened. The
crash of a client computer is bad news for the processes running on that computer, but
should have no adverse effect on the server or on other client computers. We’d like the

effect to be as if the client processes on the crashed computer had suddenly closed all
their files and terminated.

In Practice ...

NFS version 2
—relaxed approach to consistency
— handles failures well
CIFS
— strictly consistent
— intolerant of failures
DCE DFS
— strictly consistent
— sort of tolerant of failures
NFS version 4
— either relaxed or strictly-consistent
— handles failures very well

CS 138 XV-12 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

NFS Version 2

* Released in mid 1980s
* Three protocols in one

— file protocol } Basic NES
— mount protocol

— network lock manager protocol

Extended NFS

CS 138 XV-13 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

NFS consists of three component protocols: a mount protocol for making collections of
files stored on servers available to client nodes, the NFS file protocol for accessing and
manipulating files and directories, and a network lock manager (NLM) for locking files
over the network and recovering lock state after failures.

An NFS server gives its clients access to one or more of its local file systems, providing
them with opaque identifiers called file handles to refer to files and directories. Clients
use a separate protocol, the mount protocol, to get a file handle for the root of a server file
system, then use the NFS protocol to follow paths within the file system and to access its
files, placing simple remote procedure calls to read them and write them. A third
protocol, the network lock manager protocol (NLM), was added later and may be used, if
desired, to synchronize access to files. All communication between client and server is
with ONC RPC.

Distribution of Components

data
cache

open-file
state

data
cache

open-file
state

data
EED S——
local
file system

4 Z
m m
(2] (2]
< <
N N
Q Q
o o
S S
-~ -~

NFSv2 server

Cs 138

XV-14

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Consistency in Basic NFSv2

file x block 1

file x block 5

file y block 2

ile y block 17

Data cache

file x attrs

validity period

file y attrs

validity period

Attribute cache

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

More ...

+ All write RPC requests must be handled
synchronously on the server

+ Close-to-Open consistency
— client writes back all changes on close
— flushes cached file info on open

CS 138

XV-16 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Client Crash Recovery
Process| Process|
A B
ta Cac Data Cache
Server
Data Cache
CS 138 XV-17 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Since NF'S servers are stateless, the crash and restart of a client has no effect on them.
Thus client crash recovery involves no actions on NFS’s part.

Server Crash Recovery

Process Process
A B

Data Cache Data Cache

Server

Da he

-

CS 138 XV-18 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Recovery from a server crash is easy for the server — it merely resumes processing
requests. The client is generally delighted when the server recovers; its concern is what
to do while the server is down.

Client machines may choose to “mount” NFS file systems in one of two ways: soft
mounts and hard mounts. With a soft mount, if the server crashes, then attempts to
access the down file system fail — a “timed-out” error code is returned. This is often not
terribly useful, since most applications are not equipped to deal with such problems. In
the other approach (the hard mount) if the server crashes, then clients repeatedly re-try
operations until the server recovers. This can try the patience of users, but it doesn’t
break applications.

File Locking

+ State is required on the server!

—recovery must take place in the event of client
and server crashes

CS 138

XV-19 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Network Lock Manager Protocol

Process|| lockd lockd Process‘
A statd statd B

Data Cache Data Cache

Server

Data Cache

C

CS 138 XV-20 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The stateless approach clearly doesn’t work if one is concerned about locking files. For
this, NFS employs a separate lock protocol. Each participating machine runs two special
processes: a lock manager, typically known as the lock daemon, and a status monitor,
typically known as the status daemon. The lock daemons manage the locking and
unlocking of files; the status daemons help cope with crashes. When an application on a
client machine attempts to lock a remote file, it contacts the local lock manager which
places an RPC to the lock manager on the server, which locks it there.

If a client crashes, the server’s status daemon unlocks all of the files that the client
had locked. The only difficulty here is determining whether the client has crashed —
perhaps it is merely slow. The approach used in NFS is that the client, when it comes
back to life, announces to the server that it has been down. Of course, human
intervention may be required if the client is down for a long period of time.

If a server crashes, it loses all knowledge of which files are locked and by whom. So,
when it comes back up, it must ask the clients to tell it which files they had locked.
Upon receipt of this information, it restores its original state and resumes normal
operation.

NFS Version 3

* |In use at Brown and in most of the rest of the
world

« Basically the same as NFSv2
— improved handling of attributes
— commit operation for writes
— various other things

CS 138 XV-21 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

CIFS

+ Common Internet File System
— Microsoft’s distributed file system
* Features
— batched requests and responses
— strictly consistent
* Not featured ...
— depends on reliability of transport protocol
— loss of connection == loss of session

CS 138 XV-22 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

History

» Originally a simple means for sharing files

— developed by IBM and called server message
block protocol (SMB)

—ran on top of NetBIOS
* Microsoft took over
—renamed CIFS in late 1990s
— uses SMB as RPC-like communication protocol
- runs on NetBIOS

- usually layered on TCP
- sometimes no NetBIOS, just TCP

CS 138 XVv-23 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Consistency vs. Performance

+ Strict consistency is easy ...
— ... if all operations take place on server
— no client caching

* Performance is good ...
— ... if all operations take place on client
— everything is cached on client

* Put the two together ...

7/

— or you can do opportunistic locking

CS 138 XV-24 Copyright © 2016 Thomas W. Doeppner. All rights reserve

Opportunistic Locks

Open A

OK, Op Lock
<—

Open A

Client 1 Revoke Op Lock Client 2
<«—— | Server

OK, changes
R

OK

CS 138 XV-25 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Opportunistic locks are used by CIFS.

