CS 138: Epidemics and Bayou

Cs 138

XIvV-1 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Topics

* Client-based consistency
+ Epidemic algorithms
+ Bayou and Weak Consistency

Cs 138

Xlv-2 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Room Reservation

« Room database maintained on one or more
servers

* Clients use Gossip to make updates
—everything is linearizable
* Problem solved ...

Cs 138

XIvV-3 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Room Reservation (2)

* 138 TAs schedule room for help session
* 167 TAs also schedule room for help session
* But it’s spring break ...
— 138 TAs are on flight to St. Thomas
- at least one has copy of reservation DB
— 167 TAs are on flight to Tahiti
- at least one has copy of reservation DB
— can’t detect conflicts en route
- cheap airfares — no internet on plane
— Gossip can’t cope

CS 138 XIv-4 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Weak Consistency

* Replicas are eventually consistent with one
another

— assuming no conflicts

CS 138 XIV-5 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Synchronization of Content

+ Consensus
—requires quorum
+ Simpler approach

— each node periodically contacts a random
node

- update it (or vice versa)
— doesn’t require quorum
—does it work?

Cs 138

XIV-6 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Anti-Entropy

« At each synchronization period, server P
picks a random server Q and exchanges
updates

* Three types:
— push: P - Q
—pull: P — Q
— push-pull: P - Q
+ Entire databases are exchanged

— no timestamp information to determine what’s
new

— optimization: use checksums to see if they’re
different

CS 138 XIV-7 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

Anti-entropy works as follows: periodically, a server P randomly chooses a
server Q and then the two exchange databases. Three modes of anti-entropy
are possible. In push mode, P pushes its database to Q, which adds to its
database everything in P that it doesn’t have. In the pull mode, the reverse is
done. Push-pull mode works in both directions.

This discussion comes from “Epidemic Algorithms for Replicated Database
Maintenance,” by A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S.
Shenker, H. Sturgis, D. Swinehart, and D. Terry, Proceedings of the ACM
SIGACT-SIGOPS 6™ Annual Symposium on Principles of Distributed
Computing, August, 1987.



Epidemics

+ Established theory of how diseases spread by
epidemics
—adapt it
— primary difference: infection is good

GoF

«

CS 138 XIV-8 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Epidemic Theory

+ Assume a fixed population of size n
* For now assume homogeneous spreading
— anybody can infect anybody else with equal
probability
+ Assume k members already infected
« Assume infection occurs in rounds

* In computer terms:

— a site holding an update it is willing to share is
infective

— a site that has not yet received an update is
susceptible

— a site that has received an update, but unwilling to
share is removed

CS 138 XIV-9 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

We look at the fundamentals of epidemic theory in order to analyze the basic
performance of the anti-entropy algorithms. Assume that any server can infect
any other server with equal probability. Also assume that k members are
already infected and infections occur in rounds: at each round, each server
randomly picks another server.



Time to Infect

* Number of rounds necessary to infect whole
population grows O(log n)

— for push: log,(n) + In(n) + O(1) (large n)

Cs 138

XIv-10 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Push vs. Pull

* Which is better initially?
— push
* If number of infected members is large; pull is better

— let p; be the probability of a site’s remaining susceptible after the ith
cycle of anti-entropy
- for pull, a site remains susceptible after the i+1st cycle if it was
susceptible after the ith cycle and it contacted a susceptible site
in the i+1st cycle.

Piv1 P2
quickly goes to zero for small p;

- for push, a site remains susceptible after the i+1st cycle if it was
susceptible after ith cycle and no infectious site chose to
contact it in the i+1st cycle

Pi+1 = pi(1 — 1)71(1-;;,- LB
n &
CS 138 XIv-11 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

If we compare the performance of the pull and push approaches; we observe
that (for a very large number of servers) the pull approach converges (i.e.,
infects the entire population) faster than push does. Push-pull performs
similar to pull.



Exchange Updates,
Not Databases

+ Each node keeps list of recent updates (list of
“infections”)

— propagates these to others at each contact
- receiver adds updates to its list
—when do items get removed from list?

CS 138 XIV-12 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Rumor Mongering

« Server P randomly selects Q to push updates

+ If Q already has seen the updates of P, then P
may “lose interest” (become removed)

— ... with probability 1/k

CS 138 XIvV-13 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

A form of non-simple epidemic is called rumor mongering.



Rumor Mongering

+ Analysis
s: % servers that are susceptible
i: % servers that are infective
ds di

. . ) 1
differential equations = & — — Q] — — — 1
from epidemic theory: dt St dt St k (1 S)L

k+1

1
for large n: i(s) = % (1-s)+ EIOgS

i(s)is zerowhen: s = e~ (k+1)(1-5)

for k=1, 20% will miss the rumor
for k=2, 6% will miss it

CS 138 XIv-14 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The math is taken from epidemic theory. The final equation tells us how
many are still susceptible when there are no more infectious nodes. Thus these
will never get the updates.



Rumor Mongering with Anti-
Entropy

+ Spread updates using rumor mongering
— some nodes will not get updates
— but exchanges are cheap
* Run anti-entropy infrequently
— guarantees all nodes will get updates
— but exchanges are expensive

CS 138 XIV-15 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Removing Data

+ Spread deletions just like updates

+ What if an old copy of update x arrives after
delete x has been processed?

— x is added again
—not good ...

CS 138 XIV-16 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Recall that we have no time stamps, so it cannot be determined if an update
is new or old.



Death Certificates

» Solution: hold on to fact that x has been
deleted

— propagate death certificates
— like updates, but record a void

* How long do nodes hold on to death
certificates?

— a finite period
- never long enough ...
* Retain a few dormant death certificates

— will be repropagated as death certificates if old
update shows up

CS 138 XIV-17 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Application-specific Conflicts

» Concurrent writes to the same object might not conflict
— e.g., two updates reserving the same room for different times
+ Writes to different objects may conflict

— e.g., one update for scheduling the projector and the other
one the meeting room

+ Conventional techniques decide false conflicts or false non-
conflicts

+ Bayou: Account for application semantics
— conflict detection with help of application

CS 138 XIvV-18 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

There are many scenarios in which conventional version vector-based
techniques fail to detect the conflicts correctly. In some applications,
concurrent writes to the same object may not conflict as expected.
Furthermore, concurrent writes to different objects may conflict. Bayou
handles such cases by having the application define its own notion of conflict.



Bayou

Client moves to other location
and (transparently) connects to

other replica
— L

8 Replicas need to maintain
client-centric consistency

——
Wide-area network o

Distributed and replicated database

/ Read and write operations
Portable computer

CS 138 XIV-19 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Papers on Bayou include:

“Session Guarantees for Weakly Consistent Replicated Data,” Proceedings of the Third
International Conference on Parallel and Distributed Information Systems, 1994.

“Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System,”
Proceedings of the fifteenth ACM symposium on Operating systems principles, 1995 (http://
delivery.acm.org/10.1145/230000/224070/pl172-terry.pdf?
key1=224070&key2=3718232721&coll=GUIDE&dI=GUIDE&CFI).

“Flexible Update Propagation for Weakly Consistent Replication,” Proceedings of the
sixteenth ACM symposium on Operating systems principles, 1997 (http://delivery.acm.org/
10.1145/270000/266711/p288-petersen.pdf?
key1=266711&key2=2038232721&coll=GUIDE&dI=GUIDE&CFID=86082163&CFTOKEN=970
29400).



Conflict Detection & Resolution

* Dependency check
— a condition over the state of the database
— included in every “write”
- together with “expected result”
— shared-calendar example:

- condition: Is there another meeting at the same room at
the same time?

* A merge procedure is used if a conflict is detected
— shared-calendar example:
- resolution: reschedule to alternate time
— produces new update

CS 138 XIvV-20 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Conflict detection is accomplished by using dependency checks — each write
operation also supplies a dependency check that specifies a simple condition
defined over the state of the database. The dependency check also defines what
the application expects to see as a result when the condition gets evaluated. If
indeed the expected result is observed then Bayou decides that there is no
conflict, else it decides that there is a conflict.

If there is a conflict, then a merge procedure (i.e., a conflict resolution
procedure), also supplied by the application, is executed to resolve the conflict.
The merge procedure produces a new alternate update that is acceptable by
the application and that would not create a conflict with the current database

state (i.e., an update for which the dependency check will produce the expected
result).



A Bayou “write”

* Processed at each replica:

Bayou Write (update, dep check,mergeproc) {
IF (DB _EVAL (dep check.query) #
dep check.expected result)
resolved update = EXECUTE (mergeproc) ;
ELSE
resolved update = update;
DB _EXEC (resolved update) ;

CS 138 XIV-21 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The slide shows the basic format of a Bayou write.



Example: Write and Reconcile in a Shared
Calendar

Update={insert, Meetings, 12/18/95, 1:30pm, 60min, “Budget Meeting”}

Dependency check={query="“SELECT key FROM Meetings WHERE day=12/18/95 AND

start<2:30pm AND end>1:30pm”, expected result=EMPTY}
MergeProc:

alternates={ {12/18/95, 3:00pm}, {12/19/95, 9:30am} }

FOREACH a IN alternates {

/* check if feasible, produce newupdate */ }

if (newupdate = {}) /* no feasible alternate */
newupdate = { insert, ErrorLog, “Update” }

return (newupdate)

CS 138 XIvV-22 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The slide shows an example Bayou write, including the dependency check
and the merge procedure.



Bayou

* Updates propagated via epidemic protocols

— some combination of rumor mongering and
anti-entropy

+ Weak consistency

—requirements given from the client’s
perspective

— client can choose desired (weak) consistency
model

- (next several slides)

CS 138 XIv-23 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Monotonic Reads

* A data store is said to provide monotonic-

read consistency if the following condition
holds:

— if a process reads the value of a data item x
any successive read operation on x by that

process will always return that same value or a
more recent value

+ Example (of its not holding)

—you read your calendar at one server, then go
to another and don’t see a recent update that
was present at the first server, then go to
another server and see it, then go to another
and don’t see it ...

CS 138 XIvV-24 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Note that “process” here means a client who is connecting to multiple servers.



Monotonic Writes

* In a monotonic-write consistent store, the
following condition holds:

— a write operation by a process on a data item x
is completed before any successive write
operation on x by the same process

* Example

— you update a header file in a source-code
directory on one server, then go to another and
update a source-code file; someone else now
tries to compile

CS 138 XIvV-25 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Read Your Writes

+ A data store is said to provide read-your-
writes consistency, if the following condition
holds

— the effect of a write operation by a process on
data item x will always be seen by a

successive read operation on x by the same
process

+ Example

—you change your password, then move to
another server and your new password hasn’t
taken effect

CS 138 XIV-26 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Writes Follow Reads

+ A data store is said to provide writes-follow-
reads consistency, if the following holds:

— a write operation by a process on a data item x
following a previous read operation on x by the
same process is guaranteed to take place on
the same or a more recent value of x that was
read

+ Example:

— consider a loosely connected bulletin-board
service (such as Usenet). You would like it to
be the case that responses to queries are seen
after the queries at all sites

CS 138 XIv=-27 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Dealing with the Constraints

» Clients keep track of dependencies

—read set: set of IDs for writes that are relevant
to session reads

— write set: set of IDs for writes performed in
session

+ Server S maintains DB(S, t)

— ordered sequence of writes received by server
up to time ¢

CS 138 XIv-28 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

We sketch an approach to an implementation of the constraints. Our first few ideas aren’t
entirely practical, but will lead to an approach that is.



Read Your Writes

* Whenever write is accepted by a server, client
adds write ID to write set

* Before each read from server S at time t,
client must check that

write set C DB(S, t)

CS 138 XIv-29 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

If a server can’t be found that satisfies the restriction of the second bullet, then the
application must be notified that read-your-writes cannot be maintained.



Monotonic Reads

» Before each read from server S at time t,
client must check that

read set C DB(S, t)

» After each read, add to read set the writes
that the read depended on

Cs 138

XIV-30 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Anti-Entropy Constraints

* Required of servers to handle monotonic
writes and writes follow reads

— new writes accepted by a server from a client
are ordered after existing writes
— during anti-entropy exchanges:

- if server S1 sends write W2 to server S2,
then any W1 ordered before W2 on S1 is
also sent to S2

CS 138 XIV-31 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Writes Follow Reads

» After each read, add to read set the writes
that the read depended on

* Before each write at time t, client must check
that

read set C DB(S, t)

CS 138 XIvV-32 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Monotonic Writes

* Before each write at time t, client must check
that

write set C DB(S, t)

+ After each write is accepted by server, client
adds write ID to its write set

CS 138 XIV-33 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




A Practical Implementation

* Implement write IDs as <server, logical time>
+ Servers maintain version vectors (essentially
vector clocks)

- V[x] = logical time of most recent (by logical
time) write ID received from server x by server
S

* Clients maintain two session vectors,
updated like vector clocks
—read vector: writes relevant to session reads
— write vector: session writes

CS 138 XIV-34 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Anti-Entropy Implementation

+ Each server keeps log of all writes, ordered

by write ID
+ On anti-entropy exchange (sender S; receiver
R):

— S sends R all writes unknown to R
- uses version vectors

CS 138 XIV=-35 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Ordering

» Initial write order is tentative

+ Designated primary server determines total
order of writes: commit sequence number
(CSN)

— write ID = <CSN, server ID, logical time>

- CSN = w initially (while tentative)
— primary propagates updated write IDs
—once received, order is permanent (and total)

Co | C | ™7 Ch | 4| t | i

committed tentative

>
>

CS 138 XIV-36 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




Log Truncation

* When can it be done?

Co | G| 77 Chllbo [t o G| tig
) committed tentative
L ]\ J
f Y
This part is fixed and This part is not fixed: its
represented by database order can change
contents

CS 138 XIvV=37 Copyright © 2016 Thomas W. Doeppner. All rights reserved.




