Debugging Distributed Systems

CS 138 X1

Today

Cuts, states, and properties
Deterministic Replay

Causal Tracing

Won't cover verification and model checking (see
Logic for Systems!)

CS 138 Xll-2 © 2016 Rodrigo Fonseca

In the beginning...

. life was simple
— Activity happening in one thread ~ meaningful
— Hardware support for understanding execution
- Stack hugely helpful (e.g. profiling, debugging)
— Single-machine systems
- OS had global view
- Timestamps in logs made sense

gprof, gdb, dtrace, strace, top, ...

CS 138

odrlg ansec

e: Anthropology: Nelson, Gilbert, Wong, 5. Vhiier rice (20

But then things got complicated

« Within a node
— Threadpools, queues (e.g., SEDA), multi-core

— Single-threaded event loops, callbacks,
continuations

* Across multiple nodes
— SOA, Ajax, Microservices, Dunghill
— Complex software stacks

« Stack traces, thread ids, thread local storage,
logs all tell a small part of the story

CS 138 X4 © 2016 Rodrigo Fonseca

Evolution of a Distributed
Program

 Execution is a series of transitions between
global states of a system

3 4
P1 ® /. >
P2 ® >
1 2 3
SOO
%
- « Lattice of global states
/7 . . .
sso\0>s21\ « Paths on this lattice are possible
NN executions, called linearizations
S32 23
NS
/ 33

CS 138 XIllI-5 © 2016 Rodrigo Fonseca

Evaluating Global Predicates

« Let ®(S) be a predicate on a global state

— E.g., there is a circular dependency (deadlock), or (x
+y>2z), ...

s+ We want to evaluate two properties of the system:

S
/sfo\ — possibly @: @ is true at some point in at least one
$o. S, linearization
NN . . -
N5 —definitely ®: @ is true at some point in all
Su J® linearizations

CS 138 XIl-6 © 2016 Rodrigo Fonseca

Evaluating Global Predicates

« possibly ®:
S00 . agn
e — Start at some initial state
/sfo\ — Traverse lattice per level, until ® is true for at least
S /sm\ one state in the current level

\S/ N\ definitely ©:

7~ - Start at some initial state

/ . g o
S — Traverse lattice per level, until ® is true for all states

in the current level

CS 138 Xill-7 © 2016 Rodrigo Fonseca

How to Obtain Lattice?

* Processes send their successive states, plus vector
clocks, to central monitor process

* From vector timestamps, determine which states

/S{O are reachable from each other
AN — Can’t violate causality
S30 S21 .
Y O\ — E.g., for P,1(2,1) to be in the snapshot, P,2(2,0) at
NN least has to be in the snapshot
32\ /23
S33
/
S (1,0) (2,0)
3 4
P1 ® /. >
P2 ® >
2 3

CS 138 XIl-8 © 2016 Rodrigo Fonseca

Deterministic Replay

CS 138 XIl-9 © 2016 Rodrigo Fonseca

Deterministic Replay

Recording all events and maintaining vector
clocks may be too expensive

— Too many events?
— Too many / unknown processes?

What is the minimum that you would need to
record to reproduce an execution?

(Single process) Debugging with gdb
— Notice an error
— Rerun program with same inputs, set watchpoints

What would make this not work?

CS 138 XIl-10 © 2016 Rodrigo Fonseca

Non-Determinism

Random inputs
External interactions
— User input
— Network messages
— Interrupts, in general

We can’t replay the entire world
E.g., Raft makes extensive use of randomization

CS 138 XIl-11 © 2016 Rodrigo Fonseca

Deterministic Replay

Example: liblog (Altekar et al, 2006)
Shared library design

Log content of all messages

— Recelving process can be replayed
independently

Use Lamport clocks to capture a
total order (they don’t need to
compare arbitrary timestamps)

Challenge: internal concurrency

application

other libs

application

other libs

GNU/Linux

x86 Hardware

— Must either log thread reads/writes to shared memory, or
the order of their scheduling (to reproduce races)

Checkpoints also recorded periodically

CS 138

Xll-12

© 2016 Rodrigo Fonseca

liblog Replaying

« Adapted GDB debugger

— Run application code but replace system calls with
the logged system call results

— For multiple threads, also replace the thread
scheduler to read from the recorded thread
ordering

— Console application coordinates several GDB
instances, one per process

« Challenges
— Overhead
— Log size, checkpoint size
— Not complete (limited vantage point)

CS 138 Xill-13 © 2016 Rodrigo Fonseca

liblog usage

 Original authors found some bugs, erroneous
assumptions

 Built a tool, friday, to specify global watchpoints
* Many other examples

— E.g., Mugshot (Mickens, NSDI 2010) offers
deterministic replay of Javascript applications

- <7% overhead, <80KB of logs per minute
— Deja Vu for Java (Choi and Srinivasan, ‘98)
— Retrospect for MPI programs

— Also some based on the hypervisor, e.g., XenLR
and ReTrace (for VMWare)

CS 138 Xll-14 © 2016 Rodrigo Fonseca

Causal Tracing

CS 138 XIll-15 © 2016 Rodrigo Fonseca

What do people usually do In
practice?

« Always have some form of /ocal logs
— But...
—Yes ®

CS 138 XIll-16 © 2016 Rodrigo Fonseca

Status quo: device centric

Web 1
Load
Balancer =

9 \ * Database

Firewall

—

[04:03:23 2006] [notice] Dispatch s2.°3

[04:07:03 2006] [notice] Dispatch s1.

[04:03:24 2006] [notice] Dispatch s3.

*

>

28 03:55:38 PM fire...
28 03:55:38 PM fire...

28 03:55:39 PM fire...
28 03:55:39 PM fire...

LOG: statement: select oid...
LOG: statement: SELECT COU.

LOG: statement: select oid...

LOG: statement: SELECT COU..

65.54.188.26 - - [20/Aug/2006:09:13:32 -0700] "GET /gal

CS 138 Xll-17 © 2016 Rodrigo Fonseca

This is not so bad, is it?

e comemnt 12

T

R e e b -comem il T

2w sy 5D

CS 138 XIl-18 © 2016 Rodrigo Fonseca

Causal Tracing

* Main idea: capture causality on well defined
operations of a distributed system

— E.g., all actions inside google when you read an
email

— Useful for debugging, performance analysis, root
cause analysis of faults

* How can we reconstruct causality?

— Want to capture (a subset of) the happens before
relation, which is a DAG among events

— Vector clocks
— Can also directly record the graph!

CS 138 XIll-19 © 2016 Rodrigo Fonseca

Recording Causality

« Black box approaches

— Infer causality by observing messages in and out
of processes (but can get confused)

- Project5 (Reynolds et al)

— BorderPatrol (Koskinen and Janotti, ‘08): assumes
knowledge of protocol semantics, better precision

« |f application already logs enough information
— Magpie

* |f you can change or are writing application (or
libraries)

— Pip, Dapper, X-Trace, Pinpoint, ...

CS 138 XIl-20 © 2016 Rodrigo Fonseca

Causal Tracing

Revalidate to

origin
-
Not Found - M
in cache O
\ - e e
Start HTTP DSHT Timeouts Finish HTTP
Request Lookup Request

Xil-21 SoUFRE™S

FACe

Causal Tracing

- App Server Timeline 16 callls over 71 ms

e

TO ==

I im B
3 — 20 - 2O ©3 = 20 00 ==
TR CaAm IO ® SyeTs
' epr— '.— V] SDacre Py chent e
13 ~= OST ma 380 ma
lo_ 10] mmes '.-. (%] romt_chant_soereg
13 -

| e
197 ma

£1] mmew
1T e

CS 138

Xll-22

© 2016 Rodrigo Fonseca

Sotirce: Ann

Revalidate to
origin

Not Found g ’&OO
et L Fesassnll
- e
Start HTTP DSHT Timeouts Finish HTTP

Request Lookup Request

End-to-End Tracing

™M < Lo
2 2.]
O@/\&c‘,\“" Tlxvitte_r
& o rezi
‘,\@\ SoundCloud
HDFS, Hbase,
Accumulo,
AppNeta pnoenix
AppDynamiggogle
NewRElic Baidu
Netflix
Pivotal ... coarge ronsecs

I 1l A

X-Trace

X-Trace records events in a distributed execution a
their causal relationship

Events are grouped into tasks
— Well defined starting event and all that is causally related

Each event generates a report, binding it to one or more
preceding events

Captures full happens-before relation

— For events that are part of the same task

— Not ideal for systems where everything talks to everything
all the time

CS 138 Xll-24 © 2016 Rodrigo Fonseca

X-Trace Output

' IP ' IP '
Router Router

» Task graph capturing task execution
—Nodes: events across layers, devices
— Edges: causal relations between events

CS 138 XIll-25 © 2016 Rodrigo Fonseca

Basic Mechanism

/ - g - n
HTTP@ T, a] ;m T, g] ,(HTTP
Client Proxy Server
TCP 1 /TCP 1 X-Trace Report
Start "\ End TaskID: T
EventID: g
Edge: from a, f |

c d e |

G G G Rolster ROIEter °
« Each event uniquely identified within a task:
(| ‘Taskid, Even

 [Taskld, Eventlfjj propagaqed along execution path
* For each event create and log an X-T[ﬁrace report
—Enough info to reconstruct the task graph

CS 138 XIl-26 © 2016 Rodrigo Fonseca

X-Trace Library API

Handles propagation within app
Threads / event-based (e.g., libasync)
Akin to a logging API:

— Main call is logEvent(message)

Library takes care of event id creation, binding,
reporting, etc

Implementations in C++, Java, Ruby, Javascript

CS 138

Xll-27 © 2016 Rodrigo Fonseca

Example: CoralCDN

CoralCDN Distributed
HTTP Cache

CS 138 XIl-28 © 2016 Rodrigo Fonseca

CoralCDN Response Times

Coral Processing Time versus Size

189s: Linux TCP 100000 p———— T T .
T1m¢out connecting to 10000 |]
origin ' ‘
189 seconds ?
: 5 Qe x +)- Q- 0 QQOQ
Slow connection £ oo ' :
Proxy -> Client g 10 | -
Slow connection 8 : 4
Origin -> Proxy 3 Same symptoms, very different]
; causes]
Timeout in RPC, due to . | . Sasg00 . 1
slow Planetlab node! | \ / T
0-0001100 00 10000 100000 1e+06 1e+07 1e+08

Object size (bytes)

Rodrigo Fonseca

CS 138

Critical Path

Revalidate to
origin

Not Found
in cache

\
Start HTTP DSHT Timeouts Finish HTTP
Request Lookup Request

CS 138 XI1-30 © 2016 Rodrigo Fonseca

End-to-End Tracing

* Propagate metadata along with the execution®
— Usually a request or task id

— Plus some link to the past (forming DAG, or call
chain)

« Successful
— Debugging
— Performance tuning
— Profiling
— Root-cause analysis

CS 138 XIl-31 © 2016 Rodrigo Fonseca

* Propagate metadata along with the execution

CS 138 XIl-32 © 2016 Rodrigo Fonseca

PervaSIve measurement .

e e S

1
{

Retro ,

1| Ge |
_ T W

Distributed enforcement
&2 Workflows ‘ Resources O Control points

(Retro Controller APIJ

Propagates TenantlD across a system for real-time
resource management

Instrumented most of the Hadoop stack
Allows several policies — e.g., DRF, LatencySLO
Treats background / foreground tasks uniformly

Jonathan Mace, Peter Bodik, Madanlal Musuvathi, and Rodrigo Fonseca
. Retro: targeted resource management in multi-tenant distributed systems. In NSDI '15

CS 138 XIl1-33 © 2016 Rodrigo Fonseca

Pivot Tracing ﬁ{

Pivot Tracing
Frontend

PT Agent
Ay

iAdvice: { Juples:

—3 Execution path (W) Baggage propagation
Tracepoint . Tracepoint w/ advice

* Dynamic instrumentation + Causal Tracing

From incr In DataNodeMetrics.incrBytesRead

Join cl In First(ClientProtocols) On cl -> incr
GroupBy cl.procName

Select cl.procName SUM(incr.delta)

* Queries 2 Dynamic Instrumentation 2> Query-
specific metadata - Results

* Implemented generic metadata layer, which we
called baggage

Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems. SOSP 2015

CS 138 Xlil-34 © 2016 Rodrigo Fonseca

Causal Metadata Propagation

* We are currently working on a generic
abstraction for causal metadata propagation to
enable multiple simultaneous uses of this data

Debugging
Dependency Tracking
Anomaly Detection
Data Provenance Monitoring Performance Guarantees
Consistent updates Distributed QoS ! '
-to- i Taint Trackin
Consistent snapshots End-to-end tracing Accounting DIFC J
pectorClocks—— Causality tracking Resource Tracing Security
Instrumented Queues,

Causal Metadata propagation 7 /e cing iibs

CS 138 XI1-35 © 2016 Rodrigo Fonseca

