
 CS 138 XII–1 © 2016 Rodrigo Fonseca

Debugging Distributed Systems

 CS 138 XII–2 © 2016 Rodrigo Fonseca

Today

•  Cuts, states, and properties
•  Deterministic Replay
•  Causal Tracing
•  Won’t cover verification and model checking (see

Logic for Systems!)

 CS 138 XII–3 © 2016 Rodrigo Fonseca

In the beginning…
… life was simple

– Activity happening in one thread ~ meaningful
– Hardware support for understanding execution

-  Stack hugely helpful (e.g. profiling, debugging)
– Single-machine systems

-  OS had global view
-  Timestamps in logs made sense

•  gprof, gdb, dtrace, strace, top, …

Source: Anthropology: Nelson, Gilbert, Wong, Miller, Price (2012)

 CS 138 XII–4 © 2016 Rodrigo Fonseca

But then things got complicated

•  Within a node
– Threadpools, queues (e.g., SEDA), multi-core
– Single-threaded event loops, callbacks,

continuations
•  Across multiple nodes

– SOA, Ajax, Microservices, Dunghill
– Complex software stacks

•  Stack traces, thread ids, thread local storage,
logs all tell a small part of the story

 CS 138 XII–5 © 2016 Rodrigo Fonseca

Evolution of a Distributed
Program

•  Execution is a series of transitions between
global states of a system

P1

P2

1 2 3 4

1 2 3
S00

S01 S10

S20 S11

S30

S40

S21

S22

S23

S33

S32

S31

S41

S42

S43

•  Lattice of global states
•  Paths on this lattice are possible

executions, called linearizations

 CS 138 XII–6 © 2016 Rodrigo Fonseca

Evaluating Global Predicates

•  Let Φ(S) be a predicate on a global state
– E.g., there is a circular dependency (deadlock), or (x

+ y > z), …
•  We want to evaluate two properties of the system:

– possibly Φ: Φ is true at some point in at least one
linearization

– definitely Φ: Φ is true at some point in all
linearizations

S00

S01 S10

S20 S11

S30

S40

S21

S22

S23

S33

S32

S31

S41

S42

S43

 CS 138 XII–7 © 2016 Rodrigo Fonseca

Evaluating Global Predicates

•  possibly Φ:
– Start at some initial state
– Traverse lattice per level, until Φ is true for at least

one state in the current level
•  definitely Φ:

– Start at some initial state
– Traverse lattice per level, until Φ is true for all states

in the current level

S00

S01 S10

S20 S11

S30

S40

S21

S22

S23

S33

S32

S31

S41

S42

S43

 CS 138 XII–8 © 2016 Rodrigo Fonseca

How to Obtain Lattice?

•  Processes send their successive states, plus vector
clocks, to central monitor process

•  From vector timestamps, determine which states
are reachable from each other

– Can’t violate causality
– E.g., for P21(2,1) to be in the snapshot, P12(2,0) at

least has to be in the snapshot

S00

S01 S10

S20 S11

S30

S40

S21

S22

S23

S33

S32

S31

S41

S42

S43

P1

P2

1 2 3 4

1 2 3

(1,0) (2,0)

(2,1)

 CS 138 XII–9 © 2016 Rodrigo Fonseca

Deterministic Replay

 CS 138 XII–10 © 2016 Rodrigo Fonseca

Deterministic Replay

•  Recording all events and maintaining vector
clocks may be too expensive

– Too many events?
– Too many / unknown processes?

•  What is the minimum that you would need to
record to reproduce an execution?

•  (Single process) Debugging with gdb
– Notice an error
– Rerun program with same inputs, set watchpoints

•  What would make this not work?

 CS 138 XII–11 © 2016 Rodrigo Fonseca

Non-Determinism

•  Random inputs
•  External interactions

– User input
– Network messages
–  Interrupts, in general

•  We can’t replay the entire world
•  E.g., Raft makes extensive use of randomization

 CS 138 XII–12 © 2016 Rodrigo Fonseca

Deterministic Replay

•  Example: liblog (Altekar et al, 2006)
•  Shared library design
•  Log content of all messages

– Receiving process can be replayed
independently

•  Use Lamport clocks to capture a
total order (they don’t need to
compare arbitrary timestamps)

application

libc

other libs
application

libc

other libs

libc

GNU/Linux
x86 Hardware

liblog libloglogger

Figure 1: Logging: liblog intercepts calls to libc and
sends results to logger process. The latter asynchronously
compresses and writes the logs to local storage.

2.1 Shared Library Implementation
The core of our debugging tool is a shared library (the
eponym liblog), which intercepts calls to libc (e.g.,
select, gettimeofday) and logs their results. Our
start-up scripts use the LD PRELOAD linker variable to
interpose liblog between libc and the application
and its other libraries (see Figure 1). liblog runs on
Linux/x86 computers and supports POSIX C/C++ appli-
cations.

We chose to build a library-based tool because op-
erating in the application’s address space is efficient.
Neither extra context switches nor virtualization layers
are required. Alternative methods like special logging
hardware [NM92, XBH03, NPC05] or kernel modifica-
tions [TH00, SKAZ04] can be even faster, but we found
these solutions too restrictive for a tool that we hope to
be widely adopted and deployed.

Another promising alternative is to run applications on
a virtual machine and then to log the entire VM [KDC05,
SH, HH05]. We rejected it because we believe that VM
technology is still too difficult to deploy and too slow for
most deployed services.

On the other hand, there are serious drawbacks of a
library implementation. First, several aspects of observ-
ing and controlling applications are more difficult from
within the address space, most notably supporting mul-
tiple threads and shared memory. We will discuss these
challenges in Section 3.

Fundamentally, however, operating in the applica-
tion’s address space is neither complete (we cannot re-
play all non-determinism) nor sound (internal state may
become corrupted, causing mistakes). We will discuss
such limitations in Section 4.

Nevertheless we believe that the combined efficiency
and ease of use of a library-based logging tool makes this
solution the most useful.

2.2 Message Tagging and Capture

The second defining aspect of our logging tool is our ap-
proach to replaying network communication. We log the
contents of all incoming messages so that the receiving
process can be replayed independently of the sender.

This flexibility comes at the cost of significant log
space (cf. Section 5) but is well justified. Previous
projects have tried the alternative, replaying all processes
and regenerating message contents on the sender. We
cannot do so because we operate in a mixed environment
with non-logging processes. Even cooperating applica-
tion logs may be unavailable for replay due to interven-
ing disk or network failure.

So far we satisfy one requirement, but we must be able
to coordinate these individual replays in order to pro-
vide another, Consistent Group Replay. For this purpose,
we embed 8-byte Lamport clocks [Lam78] in all outgo-
ing messages during execution and then use these virtual
clocks to schedule replay. The clock update algorithm
ensures that the timestamps in each log entry respect the
“happens-before” relationship. They also provide a con-
venient way to correlate message transmission and re-
ception events, so we can trace communication from ma-
chine to machine.

To make the virtual clocks more intuitive, we advance
them at the rate of the local machine clock. If the ma-
chine clocks happen to be synchronized to within one
network RTT, the virtual clocks will match exactly.

2.3 Central Replay

Our third major design decision was to enable off-site
replay. Rather than restart each process in situ, a central
console automatically downloads the necessary logs and
checkpoints and instantiates each replay process locally.
Local replay removes the network delay from the control
loop, making it feasible to operate on distributed state
and to step across processes to follow messages.

The costs are several: first, the network bandwidth
consumed by transferring logs may exceed that required
to control a remote debugger. Second, the hardware and
system software on the replay machine must match the
original host; currently we support only GNU/Linux/x86
hosts. Third, we must log data read from the local file
system (as with network messages) because the files may
not be available on the replay machine. This technique
also obviates maintaining a versioned file system or un-
doing file modifications. Finally, building a migratable
checkpoint system is challenging. We consider the first
two costs to be acceptable and will discuss our solution
to the last challenge in Section 3.6.

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 291

•  Challenge: internal concurrency
– Must either log thread reads/writes to shared memory, or

the order of their scheduling (to reproduce races)
•  Checkpoints also recorded periodically

 CS 138 XII–13 © 2016 Rodrigo Fonseca

liblog Replaying

•  Adapted GDB debugger
– Run application code but replace system calls with

the logged system call results
– For multiple threads, also replace the thread

scheduler to read from the recorded thread
ordering

– Console application coordinates several GDB
instances, one per process

•  Challenges
– Overhead
– Log size, checkpoint size
– Not complete (limited vantage point)

 CS 138 XII–14 © 2016 Rodrigo Fonseca

liblog usage

•  Original authors found some bugs, erroneous
assumptions

•  Built a tool, friday, to specify global watchpoints
•  Many other examples

– E.g., Mugshot (Mickens, NSDI 2010) offers
deterministic replay of Javascript applications

-  <7% overhead, <80KB of logs per minute
– Deja Vu for Java (Choi and Srinivasan, ‘98)
– Retrospect for MPI programs
– Also some based on the hypervisor, e.g., XenLR

and ReTrace (for VMWare)

 CS 138 XII–15 © 2016 Rodrigo Fonseca

Causal Tracing

 CS 138 XII–16 © 2016 Rodrigo Fonseca

What do people usually do in
practice?

•  Always have some form of local logs
– But…
– Yes L

 CS 138 XII–17 © 2016 Rodrigo Fonseca

Status quo: device centric

...

...
28 03:55:38 PM fire...
28 03:55:38 PM fire...
28 03:55:38 PM fire...
28 03:55:38 PM fire...
28 03:55:38 PM fire...
28 03:55:38 PM fire...
28 03:55:38 PM fire...
28 03:55:39 PM fire...
28 03:55:39 PM fire...
28 03:55:39 PM fire...
28 03:55:39 PM fire...
28 03:55:39 PM fire...
28 03:55:39 PM fire...
28 03:55:39 PM fire...
28 03:55:39 PM fire...
...

...

...
[04:03:23 2006] [notice] Dispatch s1...
[04:03:23 2006] [notice] Dispatch s2...
[04:04:18 2006] [notice] Dispatch s3...
[04:07:03 2006] [notice] Dispatch s1...
[04:10:55 2006] [notice] Dispatch s2...
[04:03:24 2006] [notice] Dispatch s3...
[04:04:47 2006] [crit] Server s3 down...
...
...

...

...
72.30.107.159 - - [20/Aug/2006:09:12:58 -0700] "GET /ga
65.54.188.26 - - [20/Aug/2006:09:13:32 -0700] "GET /rob
65.54.188.26 - - [20/Aug/2006:09:13:32 -0700] "GET /rob
65.54.188.26 - - [20/Aug/2006:09:13:32 -0700] "GET /gal
65.54.188.26 - - [20/Aug/2006:09:13:32 -0700] "GET /gal
66.249.72.163 - - [20/Aug/2006:09:15:04 -0700] "GET /ga
66.249.72.163 - - [20/Aug/2006:09:15:07 -0700] "GET /ga
66.249.72.163 - - [20/Aug/2006:09:15:10 -0700] "GET /ro
66.249.72.163 - - [20/Aug/2006:09:15:11 -0700] "GET /ga
...
...

...

...
72.30.107.159 - - [20/Aug/2006:09:12:58 -0700] "GET /ga
65.54.188.26 - - [20/Aug/2006:09:13:32 -0700] "GET /rob
65.54.188.26 - - [20/Aug/2006:09:13:32 -0700] "GET /rob
65.54.188.26 - - [20/Aug/2006:09:13:32 -0700] "GET /gal
65.54.188.26 - - [20/Aug/2006:09:13:32 -0700] "GET /gal
66.249.72.163 - - [20/Aug/2006:09:15:04 -0700] "GET /ga
66.249.72.163 - - [20/Aug/2006:09:15:07 -0700] "GET /ga
66.249.72.163 - - [20/Aug/2006:09:15:10 -0700] "GET /ro
66.249.72.163 - - [20/Aug/2006:09:15:11 -0700] "GET /ga
...
...

...

...
LOG: statement: select oid...
LOG: statement: SELECT COU...
LOG: statement: SELECT g2_...
LOG: statement: select oid...
LOG: statement: SELECT COU...
LOG: statement: SELECT g2_...
LOG: statement: select oid...
LOG: statement: SELECT COU...
LOG: statement: SELECT g2_...
LOG: statement: select oid...
LOG: statement: select oid...
LOG: statement: SELECT COU...
LOG: statement: SELECT g2_...
LOG: statement: select oid...
LOG: statement: SELECT COU...
LOG: statement: SELECT g2_...
LOG: statement: select oid...
...
...

Firewall

Load
Balancer

Web 1

Web 2

Database

 CS 138 XII–18 © 2016 Rodrigo Fonseca

This is not so bad, is it?

 CS 138 XII–19 © 2016 Rodrigo Fonseca

Causal Tracing

•  Main idea: capture causality on well defined
operations of a distributed system

– E.g., all actions inside google when you read an
email

– Useful for debugging, performance analysis, root
cause analysis of faults

•  How can we reconstruct causality?
– Want to capture (a subset of) the happens before

relation, which is a DAG among events
– Vector clocks
– Can also directly record the graph!

 CS 138 XII–20 © 2016 Rodrigo Fonseca

Recording Causality

•  Black box approaches
–  Infer causality by observing messages in and out

of processes (but can get confused)
-  Project5 (Reynolds et al)

– BorderPatrol (Koskinen and Janotti, ‘08): assumes
knowledge of protocol semantics, better precision

•  If application already logs enough information
– Magpie

•  If you can change or are writing application (or
libraries)

– Pip, Dapper, X-Trace, Pinpoint, …

 CS 138 XII–21 © 2016 Rodrigo Fonseca

Causal Tracing

Source: X-Trace, 2008

 CS 138 XII–22 © 2016 Rodrigo Fonseca

Causal Tracing

Source: AppNeta

 CS 138 XII–23 © 2016 Rodrigo Fonseca

End-to-End Tracing
20

06

20
04

20

02

20
05

20
10

20
07

20
12

20
14

20
13

Twitter
Prezi

SoundCloud
HDFS, Hbase,

Accumulo,
Phoenix
Google
Baidu
Netflix
Pivotal
Uber

Coursera
Facebook

Etsy
…

… 20
15

AppNeta
AppDynamics
NewRElic

 CS 138 XII–24 © 2016 Rodrigo Fonseca

X-Trace

•  X-Trace records events in a distributed execution and
their causal relationship

•  Events are grouped into tasks
– Well defined starting event and all that is causally related

•  Each event generates a report, binding it to one or more
preceding events

•  Captures full happens-before relation
– For events that are part of the same task
– Not ideal for systems where everything talks to everything

all the time

 CS 138 XII–25 © 2016 Rodrigo Fonseca

X-Trace Output

•  Task graph capturing task execution
– Nodes: events across layers, devices
– Edges: causal relations between events

IP IP
Router

IP
Router IP

TCP 1
Start

TCP 1
End

IP IP
Router IP

TCP 2
Start

TCP 2
End

HTTP
Proxy

HTTP
Server

HTTP
Client

 CS 138 XII–26 © 2016 Rodrigo Fonseca

•  Each event uniquely identified within a task:
[TaskId, EventId]

•  [TaskId, EventId] propagated along execution path
•  For each event create and log an X-Trace report

– Enough info to reconstruct the task graph

Basic Mechanism

IP IP
Router

IP
Router IP

TCP 1
Start

TCP 1
End

IP IP
Router IP

TCP 2
Start

TCP 2
End

HTTP
Proxy

HTTP
Server

HTTP
Client

f h
b

a g

m

n

c d e i j k l

[T, g] [T, a]
[T, a]

X-Trace Report
TaskID: T
EventID: g
Edge: from a, f

 CS 138 XII–27 © 2016 Rodrigo Fonseca

X-Trace Library API

•  Handles propagation within app
•  Threads / event-based (e.g., libasync)
•  Akin to a logging API:

– Main call is logEvent(message)
•  Library takes care of event id creation, binding,

reporting, etc
•  Implementations in C++, Java, Ruby, Javascript

 CS 138 XII–28 © 2016 Rodrigo Fonseca

Example: CoralCDN

CoralCDN Distributed
HTTP Cache

 CS 138 XII–29 © 2016 Rodrigo Fonseca

•  189s: Linux TCP
Timeout connecting to
origin

•  Slow connection
Proxy -> Client

•  Slow connection
Origin -> Proxy

•  Timeout in RPC, due to
slow Planetlab node!

Same symptoms, very different
causes

189 seconds

CoralCDN Response Times

 CS 138 XII–30 © 2016 Rodrigo Fonseca

Critical Path

 CS 138 XII–31 © 2016 Rodrigo Fonseca

End-to-End Tracing

•  Propagate metadata along with the execution*
– Usually a request or task id
– Plus some link to the past (forming DAG, or call

chain)
•  Successful

– Debugging
– Performance tuning
– Profiling
– Root-cause analysis
– …

 CS 138 XII–32 © 2016 Rodrigo Fonseca

•  Propagate metadata along with the execution

 CS 138 XII–33 © 2016 Rodrigo Fonseca

Retro

•  Propagates TenantID across a system for real-time
resource management

•  Instrumented most of the Hadoop stack
•  Allows several policies – e.g., DRF, LatencySLO
•  Treats background / foreground tasks uniformly

Jonathan Mace, Peter Bodik, Madanlal Musuvathi, and Rodrigo Fonseca
. Retro: targeted resource management in multi-tenant distributed systems. In NSDI '15

 CS 138 XII–34 © 2016 Rodrigo Fonseca

Pivot Tracing

•  Dynamic instrumentation + Causal Tracing

•  Queries à Dynamic Instrumentation à Query-
specific metadata à Results

•  Implemented generic metadata layer, which we
called baggage

Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems. SOSP 2015

Instrumented System

Tracepoint

PT Agent

PT AgentPivot Tracing
Frontend

Query{

Advice

Tracepoint w/ advice

Message bus

Baggage propagation

Tuples

Execution path

from pivot tables and pivot charts [��] from spreadsheet pro-
grams, due to their ability to dynamically select values, func-
tions, and grouping dimensions from an underlying dataset.
Pivot Tracing is intended for use in both manual and auto-
mated diagnosis tasks, and to support both one-o� queries for
interactive debugging and standing queries for long-running
system monitoring. Pivot Tracing can serve as the foundation
for the development of further diagnosis tools. Pivot Tracing
queries impose truly no overhead when disabled and utilize
dynamic instrumentation for runtime installation.

We have implemented a prototype of Pivot Tracing for Java-
based systems and evaluate it on a heterogeneousHadoop clus-
ter comprising HDFS, HBase, MapReduce, and YARN. In our
evaluation we show that Pivot Tracing can e�ectively identify
a diverse range of root causes such as so�ware bugs, miscon-
�guration, and limping hardware. We show that Pivot Tracing
is dynamic, extensible to new kinds of analysis, and enables
cross-tier analysis between any inter-operating applications
with low execution overhead.

In summary, this paper has the following contributions:
• Introduces the abstraction of the happened before join ()
for arbitrary event correlations;

• Presents an e�cient query optimization strategy and im-
plementation for at runtime, using dynamic instrumen-
tation and cross-component causal tracing;

• Presents a prototype implementation of Pivot Tracing in
Java, applied to multiple components of the Hadoop stack;

• Evaluates the utility and �exibility of Pivot Tracing to
diagnose real problems.

�. Motivation
�.� Pivot Tracing in Action

In this section we motivate Pivot Tracing with a monitoring
task on the Hadoop stack. Our goal here is to demonstrate
some of what Pivot Tracing can do, and we leave details of its
design, query language, and implementation to Sections �, �,
and �, respectively.

Suppose we want to apportion the disk bandwidth usage
across a cluster of eight machines simultaneously running
HBase, Hadoop MapReduce, and direct HDFS clients. Sec-
tion � has an overview of these components, but for now it
su�ces to know that HBase, a database application, accesses
data through HDFS, a distributed �le system. MapReduce,
in addition to accessing data through HDFS, also accesses
the disk directly to perform external sorts and to shu�e data
between tasks.

We run the following client applications:

FS������ Random closed-loop �MB HDFS reads
FS������� Random closed-loop ��MB HDFS reads
H��� ��kB row lookups in a large HBase table
H���� �MB table scans of a large HBase table
MR������� MapReduce sort job on ��GB of input data
MR�������� MapReduce sort job on ���GB of input data

By default, the systems expose a few metrics for disk con-
sumption, such as disk read throughput aggregated by each
HDFS DataNode. To reproduce this metric with Pivot Trac-
ing, we de�ne a tracepoint� for the DataNodeMetrics class to
intercept the incrBytesRead(int delta)method, and we run
the following query, in Pivot Tracing’s LINQ-like query lan-
guage [��]:
Q1: From incr In DataNodeMetrics.incrBytesRead

GroupBy incr.host,
Select incr.host, SUM(incr.delta)

�is query causes each machine to aggregate the delta argu-
ment each time incrBytesRead is invoked, grouping by the
host name. Each machine reports its local aggregate every
second, from which we produce the time series in Figure �a.

�ings get more interesting, though, if we wish to mea-
sure the HDFS usage of each of our client applications. HDFS
only has visibility of its direct clients, and thus an aggregate
view of all HBase and all MapReduce clients. At best, ap-
plications must estimate throughput client side. With Pivot
Tracing, we de�ne tracepoints for the client protocols of
HDFS (DataTransferProtocol), HBase (ClientService), and
MapReduce (ApplicationClientProtocol), and use the name
of the client process as the group by key for the query. Fig-
ure �b shows the global HDFS read throughput of each client
application, produced by the following query:
Q2: From incr In DataNodeMetrics.incrBytesRead

Join cl In First(ClientProtocols) On cl -> incr
GroupBy cl.procName
Select cl.procName SUM(incr.delta)

�e -> symbol indicates a happened-before join. Pivot Trac-
ing’s implementation will record the process name the �rst
time the request passes through any client protocol method
and propagate it along the execution.�en, whenever the exe-
cution reaches incrBytesRead on a DataNode, Pivot Tracing
will emit the bytes read or written, grouped by the recorded
name. �is query exposes information about client disk
throughput that cannot currently be exposed by HDFS.

Figure �c demonstrates the ability for Pivot Tracing to
group metrics along arbitrary dimensions. It is generated by
two queries similar to Q2 which instrument Java’s FileInput-
Stream and FileOutputStream, still joining with the client
process name. We show the per-machine, per-application
disk read and write throughput of MR������� from the
same experiment. �is �gure resembles a pivot table where
summing across rows yields per-machine totals, summing
across columns yields per-system totals, and the bottom right
corner shows the global totals. In this example, the client
application presents a further dimension along which we
could present statistics.

Query Q1 above is processed locally, while query Q2 re-
quires the propagation of information from client processes
to the data access points. Pivot Tracing’s query optimizer in-
stalls dynamic instrumentationwhere needed, and determines

�A tracepoint is a location in the application source code where instrumenta-
tion can run, cf. §�.

� ����/�/��

 CS 138 XII–35 © 2016 Rodrigo Fonseca

Causal Metadata Propagation

•  We are currently working on a generic
abstraction for causal metadata propagation to
enable multiple simultaneous uses of this data

