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This material is partially covered in Chapter 14 of Coulouris, Dollimore, Kindberg, and Blair.



Administrivia
« HW2 is out today, due on the 15t (1 week)

* Review session will be on Monday, March
215, 5:30pm

« Midterm will be on Tuesday, March 229, with
material up to Raft (next two classes)

CS 138

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
X-2 All rights reserved.




Global State
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Failure Happens

* What to do about it?
—you of course have everything backed up
— so, restore the backups
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Global State

* Your system consists of 100 nodes
— each produces a snapshot of itself periodically

— does some collection of these snapshots
constitute a meaningful notion of “global
state”?
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Distributed Snapshots (1)
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Suppose snapshots of each machine’s state were taken at the moments shown in the slide. If all
machines crashed and their states were restored with the contents of their respective snapshots,
would the system as a whole be in a state that it might have been in before the crash?



Distributed Snapshots (2)
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A cut is a consistent cut if, for each event e it contains, it
also contains all events that happened before e
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For a distributed snapshot to represent a possible state of the distributed system, we must make
certain that if in one process’s snapshot we have the receipt of a message, then some other
process’s snapshot must contain the sending of the message. A “consistent cut” is a
distributed snapshot that has this property. (Note that we’ll also look at a stronger notion in which

the snapshots must all be concurrent: none may have a causal relationship with any of the
others.)



Checkpointing

* Produce a distributed snapshot
— how?
* Independent checkpointing

— each process checkpoints itself periodically
when convenient

— to produce distributed snapshot
- start with most recent checkpoints

- roll back until consistent global checkpoint
is achieved
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Independent Checkpoining
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Suppose snapshots of each machine’s state were taken at the moments shown in the slide. If all
machines crashed and their states were restored with the contents of their respective snapshots,
would the system as a whole be in a state that it might have been in before the crash?



Domino Effect
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This slide (adapted from Figure 8-25 from Tanenbaum and Van Steen) illustrates a problem with
independent checkpoints — rolling them back to achieve a consistent global checkpoint might
result in rolling back to the distributed system’s initial state.



Coping

» Take independent, periodic checkpoints, plus
a few more

or
* Produce a global shapshot on demand
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Independent Checkpoints

* Goal
— all checkpoints are “useful”
- no need to roll back

* What are the conditions for checkpoints to for
a consistent cut?
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Causal Paths
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The state of snapshots that form a consistent cut for a global snapshot.

According to the definition, if an event is included in a consistent cut, then all events that

happen before that event have to be included as well.

One necessary condition for this to happen, then, is that there is no path between the

different snapshots, like in the slide.
C11, C21, and C31 form a consistent global snapshot.




Causal Paths
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Conversely, if there is a path between the snapshots, then there can’t be a consistent global
snapshot.

We’d like to come up with an easy method for characterizing when it’s the case that a consistent
global snapshot cannot be formed.

To this end, let’s define a “checkpoint interval” to be the interval of time in a process that
starts with a checkpoint on the process and goes to, but does not include, the next checkpoint on
that process. As an hypothesis, one that is borne out in the slide, it seems that if there is a causal
path of messages from the checkpoint interval of one checkpoint to the checkpoint interval just
prior to another, then the two checkpoints cannot be in the same consistent global snapshot.

The reasoning in support of the hypothesis is to consider any global snapshot containing two
checkpoints such that there is a causal sequence of messages from the checkpoint interval of one
to the checkpoint interval just prior to the other. For each message in the sequence, the sending of
the message must either come before or after the checkpoint of the process doing the send;
similarly for the receipt of the message. Since the sending of the first message in the sequence
comes after its process’s checkpoint and the receipt of the last comes before its process’s
checkpoint, there must be at least one message in the sequence whose send comes after the
sending process’s checkpoint and whose receipt comes before the receiving process’s checkpoint.
Thus the global snapshot is not consistent.

This establishes that the presence of such a causal path is sufficient to rule out a global
snapshot’s being consistent. Is this a necessary condition?



Non-Causal Paths

C1,0 C1,1 checkpmpt interval C1!2
P, 4 - -
11 T i
m1
CZ,O
P 1
21
\\
m2 B
\
\
‘l
Cis,o ‘32
P3 ] 1
cs 138 X-15 Copyright © 2015 Thomas W. Doeppner,Allilor::Igr'i‘gt: ;os:izlz:‘a’:

It’s not a sufficient condition for there to be no consistent snapshot.

Conversely, the fact that there is no path is not necessary for there to be a snapshot.

This slide is almost identical to the previous one, except that m3 is received after m4 is sent.
Thus there is no causal path from C, ;’s checkpoint interval to the interval just prior to C; ,.



Zigzag Paths
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Let’s generalize the notion of a causal path to a “zigzag path” from C,; to C;,. It’s just like a
causal path, except that we allow one message to follow another if the rece1pt of the first is in the
same checkpoint interval as the sending of the second. It can be shown (see “Necessary and
Sufficient Conditions for Consistent Global Snapshots,” Robert H. B. Netzer and Jian Xu, IEEE
Transactions on Parallel and Distributed Systems, Vol. 6, No. 2, February 1995) that if there is
such a zigzag path between two snapshots, they cannot be part of a consistent global snapshot.



Zigzag Path Definition

* A zigzag path exists from C; to C_ iff there
are messages m,;, m,, ... m, such that

—m, is sent by process p after C;

—if m, (1 £h <n)is received by process r, then
m,., is sent by r in the same or a later
checkpoint interval (although m, ., may be sent
before or after m, is received), and

—m,, is received by process q before C
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This definition is from the aforementioned paper by Netzer and Xu.



Theorem

+ A set of checkpoints S, each from a different
process, can belong to the same consistent
global snapshot iff no checkpointin S has a
zigzag path to any other checkpoint
(including itself) in S
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The theorem is from Netzer and Xu. A proof may be found at ftp://ftp.cs.brown.edu/pub/
techreports/93/cs93-32.pdf.
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Note that there is a zigzag path from C, ; to C,,; thus the two checkpoints cannot both be in a
consistent global snapshot. However, if C;, took place just before, rather than just after P,
received m4, then C, ;, and C,, could both be in a consistent global snapshot. In other words, C, ,
is potentially a useful checkpoint until m4 is sent.

However, if C, , takes place as shown on the slide (and thus there is a zigzag cycle from C,, to
itself, consisting of messages m3 and m4), then C, , can henceforth never be in a consistent global
snapshot (and is thus no longer useful). If failures occurred after C, ,, there would have to be a
rollback to the consistent global snapshot shown on the slide.



Corollary

» A checkpoint is useful if it potentially belongs
to some consistent global checkpoint

» Corollary: A checkpoint is useful iff it is part
of no zigzag cycle
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Adaptive Checkpointing

* On receipt of a message, receiver checks if
message completes a zigzag cycle

— if so, a new checkpoint is taken before the
message is processed

—thus, no cycle

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 X-21 All rights reserved.




However ...
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Does m2 complete a zigzag cycle? As it turns out, it does, but P, will have to wait, potentially an
unbounded amount of time, to learn if message m3 will occur.



Coping ...

» On receipt of message, check for a causal
path to a checkpoint preceding the send

— the path plus the just-received message form a
zigzag cycle
* Doesn’t catch all zigzag cycles
— testing shows it catches most of them
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Finding Causal Paths

» Use vector clocks

— components are counts of checkpoints in each
process

— details may be an exercise ...
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Producing a Consistent Global
Snapshot on Demand
* Process A wants all other processes to send

it snapshots that together form a consistent
cut (and thus a global snapshot)

* Can this be done?

CS 138
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Distributed Snapshot Algorithm

* Chandy & Lamport, 1985
— algorithm to select a consistent cut
— any process may initiate a snapshot at any
time
— processes can continue normal execution
- send and receive messages
— assumes:
- no failures of processes & channels
- strong connectivity
* at !east one path between each process
pair
- unidirectional, FIFO channels
- reliable delivery of messages
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Chandy and Lamport’s snapshot algorithm is used to select consistent cuts. The
algorithm is distributed: it works by recording the local states of each process and
then by merging them. The assumptions the algorithm makes are summarized
above.



Approach

» Snapshot consists of saved states of all
nodes along with messages in transit

* For each pair of directly connected nodes A
and B

— must record messages sent before A saved its
state but received after B saved its state

— nodes send out special marker messages
immediately after saving their states
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Example: Sending
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Here we have a two-node system. P; sends out two messages and then decides to initiate a
snapshot. It saves its state, then sends out a marker message on the channel to p,. It then sends
out another message.



Example: Receiving
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P, receives the first two messages, then receives the marker message. This is its indication to
save its state, so it does so. Since the third message was sent after p, saved its state, there is no
need for p, to record it.



Another Example: part 1
@ @
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In this example, p; decides to start a snapshot, so it first saves its state, then sends out marker
messages on all of its outgoing channels. Having done this, it sends message m1 on the channel to

Pa-



Another Example: part 2
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P, receives the marker message, which lets it know that it should take a snapshot. So it saves its
state. It then receives message m1, but doesn’t record it in the snapshot (since it was sent after p,
saved its state). The marker message to p; is still in transit. In the meantime, p; sends message
m?2 to p,.



Another Example: part 3
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P, receives message m2. Since it was sent before p; recorded its state (which it hasn’t done yet),
p, records the message as part of the channel’s state. P; finally receives the marker message from
p:, so it records its state, and then sends a marker message on the channel to p, to let p, know
that it has finally recorded its state.



Another Example: part 4
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Finally, p, receives ps’s marker message, thus letting it know that p; has saved its state. Thus
when m3 arrives, p, does not record it.



Snapshot Rules

» Marker receiving rule for process p;
On p;’s receipt of a marker message over channel c:
if (p; has not yet recorded its state)
it records its state
it records the state of ¢ as the empty sequence

it turns on recording of messages arriving over
other channels

else

p; records the state of ¢ as the set of messages it
has received over c since it saved its state and
before it received the marker over c

* Marker sending rule for process p;
After p; has recorded its state, for each outgoing channel c:

p; sends one marker message over c (before it sends
any other messages over c)
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The algorithm can be defined using two state marking rules. The marker sending
rule requires processes to send a marker along each of their outgoing links after
they have saved their local state. The marker receiving rule requires a process that
hasn’t yet recorded its state to do so, after the receipt of the first marker. It then
starts noting the messages that it receives on the other incoming links. If a process
receives a message after it has already saved its local state, then it records the
state of that channel as the messages that it received on that channel since it saved
its state.

The algorithm can be initiated by any server assuming that the server has
received an imaginary marker from some imaginary incoming link. Several
processes can initiate the process concurrently. The algorithm works fine as long
as the markers can be uniquely differentiated.



Termination

* Process P has completed its part of the
algorithm when it has processed markers on
all input channels

* |t sends its saved local state and channel
histories to the initiator

—the intent is that collection of local states form
consistent cut

- channel histories are the messages in
transit at time of cut
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Analysis

* Does it find a consistent cut?

—if so, then for any P, and P, if m is a message
sent from P, to P,, then if recv(m) is in the cut,
so is send(m)

- i.e., if recv(m) occurred before P, recorded
its state, then send(m) occurred before P,
recorded its state

— stronger statement: if for any P, and P, if e,
and e, are events in P, and P, such that e,
happens before e, (e, — e,), then if e, is in the
cut,sois e,

- i.e., if e, occurred before P, recorded its
state, then e, occurred before P, recorded
its state
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Proof

Assume no: P, recorded its state before e,
occurred (e, is in the cut, but e, is not)

— since e, — e,, there was some sequence of
messages m,, m,, ... , m, that broughtone, — e,

— since P, recorded its state before e, occurred, it
sent marker messages out on all its outgoing
channels before transmitting m,

— since the channels are FIFO, a marker reached P,
before m,,

— but then P, would have recorded its state before
ea
— but then e, would not have been in the cut
- contradiction

CS 138
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More Analysis

* Snapshot taken isn’t necessarily a state that
actually happened!

— but it could have happened ...

+ If distributed system deadlocks, no
distributed snapshot
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Example (part 1)
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The slide is Figure 14.11 from Coulouris, Dollimore, Kindberg, and Blair. We have two processes
that trade in widgets. Process p; has already send an order for 5 widgets (at $10 each) to p,, which
is about to send a response message containing the widgets.



Example (part 2)

1. Global state S
oPal S o <$1000, o> C, (empty) <$50, 2000>

(empty)

2. Global state S, - 0> o (Order 10, $100) M ) I

(empty)

3. Global state S, <$900, O> (Order 10, $100), <$50, 1995>

(five widgets)

4. Global state S <$900, 5> (Order 10, $100) <$50, 1995>

(empty)

(M = marker message)
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Process pl begins the snapshot algorithm and records its state: <$1000, 0>. The actual global
state at this moment is shown in row 1. In row 2, pl has sent a marker message along with an
order for 10 more widgets. Before p2 receives either message, it responds, in line 3, to the earlier
message with 5 widgets, and this response is processed by p3. Finally, in line 4, p2 receives the
marker message and records its state: <$50, 1995>. Thus the recorded global snapshot is <<
$1000, 0>, <$50, 1995>>, a state that never actually occurred.



Reachability
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This slide is adapted from Figure 14.13 of Coulouris, Dollimore, Kindberg, and Blair. S, ;, is the
global state the system was in just prior to the beginning of execution of the snapshot algorithm.
Spna is the global state the system was in when the algorithm terminated. Sy, is the global state
represented by the snapshot. The system went through the sequence of events e, e;, ... in going
from S, to Sg,.,. We claim that S, is reachable from S, by the sequence of events e’ (, " |, ...
e’ g, and Sg,, is reachable from S.,, by the sequence of events e’ ;, € ¢, ... €
Furthermore, €’ ,,€" |,...,€ g1, € g € gi» -, € yisapermutation of ey, €, ... , ey. Each of
the events in eg, e, ... , ey took place in some process either before or after it recorded its state
(i.e., produced a snapshot).

Suppose that e; is a post-snapshot event at one process and e;,; is a pre-snapshot event at
another. It cannot be that e; — e,,;, since this would mean that the first is the sending of a
message and the second is the receiving of the same message. Since e; is a post-snapshot event, a
marker message would have had to precede the message, making the second event a post-
snapshot event, contrary to our assumption. Thus there is no causal relation between the two
events and they may be swapped without violating happened-before relationships. By swapping
such pairs of events, we can move all pre-snapshot events to the front of the sequence and all
post-snapshot events to the rear. The pre-snapshot events are thus e’ ,, €’ |, ... , € ;, and the
post-snapshot events are thus e’ ,€" ¢,1, ..., €



Global Properties

+ Safety
— bad things will not happen
— e.g., mutual exclusion is a safety property
* Liveness
— good things will happen
—e.g., termination is a liveness property
Stable properties
— once true — always true
* Transient properties
—once true — who knows?
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Stable Global Properties
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This slide is Figure 14.8 from Coulouris, Dollimore, Kindberg, and Blair.

Case (a) above shows a distributed garbage collection example where process pl
has two objects that have references to them (one local and one remote); and
process p2 has one garbage object and another whose reference is in transit to p1.
This example demonstrates that we also need to take into account the state of the
communication channel when we talk about the global properties of a system.

Case (b) demonstrates a distributed deadlock scenario, where two processes are
blocked waiting to hear from each other. If this is the case, then the processes will
not be able to make any progress. Detecting deadlocks requires forming a waits-for
graph and checking whether the graph has any cycles.

Case (c) shows a distributed termination detection scenario. The problem here is
to determine that a distributed algorithm has terminated. This involves more than
just checking whether each process has halted. We need to also consider any
activation messages that may be on their way to their destinations.



Transient Properties

* Distributed debugging
— assert(Va#b (|x, - y,| < 10))
- X, and y, reside in process a
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How To ...

State collection

— each process sends snapshots to central
server

— contain vector timestamps
Central server checks for transient property ¢

— looks at global states that could have resulted
from initial state, given vector timestamps

» possibly ¢
—if ¢ holds in at least one of them
definitely ¢

— for all possible (causally consistent) orderings,
¢ holds at some point
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Computing possibly ¢ and definitely ¢ are possible, though certainly time consuming. See
Coulouris, Dollimore, Kindberg, and Blair, Section 14.6.



