
This material is partially covered in Chapter 14 of Coulouris, Dollimore, Kindberg, and Blair. 











Suppose snapshots of each machine’s state were taken at the moments shown in the slide. If all 
machines crashed and their states were restored with the contents of their respective snapshots, 
would the system as a whole be in a state that it might have been in before the crash? 



For a distributed snapshot to represent a possible state of the distributed system, we must make 
certain that if in one process’s snapshot we have the receipt of a message, then some other 
process’s snapshot must contain the sending of the message. A “consistent cut” is a 
distributed snapshot that has this property. (Note that we’ll also look at a stronger notion in which 
the snapshots must all be concurrent: none may have a causal relationship with any of the 
others.) 





Suppose snapshots of each machine’s state were taken at the moments shown in the slide. If all 
machines crashed and their states were restored with the contents of their respective snapshots, 
would the system as a whole be in a state that it might have been in before the crash? 



This slide (adapted from Figure 8-25 from Tanenbaum and Van Steen) illustrates a problem with 
independent checkpoints — rolling them back to achieve a consistent global checkpoint might 
result in rolling back to the distributed system’s initial state. 







The state of snapshots that form a consistent cut for a global snapshot. 
According to the definition, if an event is included in a consistent cut, then all events that 

happen before that event have to be included as well. 
One necessary condition for this to happen, then, is that there is no path between the 

different snapshots, like in the slide. 
C11, C21, and C31 form a consistent global snapshot. 



Conversely, if there is a path between the snapshots, then there can’t be a consistent global 
snapshot.  

We’d like to come up with an easy method for characterizing when it’s the case that a consistent 
global snapshot cannot be formed. 

 To this end, let’s define a “checkpoint interval” to be the interval of time in a process that 
starts with a checkpoint on the process and goes to, but does not include, the next checkpoint on 
that process. As an hypothesis, one that is borne out in the slide, it seems that if there is a causal 
path of messages from the checkpoint interval of one checkpoint to the checkpoint interval just 
prior to another, then the two checkpoints cannot be in the same consistent global snapshot. 

The reasoning in support of the hypothesis is to consider any global snapshot containing two 
checkpoints such that there is a causal sequence of messages from the checkpoint interval of one 
to the checkpoint interval just prior to the other. For each message in the sequence, the sending of 
the message must either come before or after the checkpoint of the process doing the send; 
similarly for the receipt of the message. Since the sending of the first message in the sequence 
comes after its process’s checkpoint and the receipt of the last comes before its process’s 
checkpoint, there must be at least one message in the sequence whose send comes after the 
sending process’s checkpoint and whose receipt comes before the receiving process’s checkpoint. 
Thus the global snapshot is not consistent. 

This establishes that the presence of such a causal path is sufficient to rule out a global 
snapshot’s being consistent. Is this a necessary condition? 



It’s not a sufficient condition for there to be no consistent snapshot. 
Conversely, the fact that there is no path is not necessary for there to be a snapshot.  
This slide is almost identical to the previous one, except that m3 is received after m4 is sent.  
Thus there is no causal path from C1,1’s checkpoint interval to the interval just prior to C3,2. 



Let’s generalize the notion of a causal path to a “zigzag path” from C1,1 to C3,2. It’s just like a 
causal path, except that we allow one message to follow another if the receipt of the first is in the 
same checkpoint interval as the sending of the second. It can be shown (see “Necessary and 
Sufficient Conditions for Consistent Global Snapshots,” Robert H. B. Netzer and Jian Xu, IEEE 
Transactions on Parallel and Distributed Systems, Vol. 6, No. 2, February 1995) that if there is 
such a zigzag path between two snapshots, they cannot be part of a consistent global snapshot.  



This definition is from the aforementioned paper by Netzer and Xu. 



The theorem is from Netzer and Xu. A proof may be found at ftp://ftp.cs.brown.edu/pub/
techreports/93/cs93-32.pdf. 



Note that there is a zigzag path from C1,1 to C2,2; thus the two checkpoints cannot both be in a 
consistent global snapshot. However, if C1,2 took place just before, rather than just after P1 
received m4, then C1,2 and C2,2 could both be in a consistent global snapshot. In other words, C2,2 
is potentially a useful checkpoint until m4 is sent. 

However, if C1,2 takes place as shown on the slide (and thus there is a zigzag cycle from C2,2 to 
itself, consisting of messages m3 and m4), then C2,2 can henceforth never be in a consistent global 
snapshot (and is thus no longer useful). If failures occurred after C1,2, there would have to be a 
rollback to the consistent global snapshot shown on the slide. 







Does m2 complete a zigzag cycle? As it turns out, it does, but P1 will have to wait, potentially an 
unbounded amount of time, to learn if message m3 will occur. 









Chandy and Lamport’s snapshot algorithm is used to select consistent cuts. The 
algorithm is distributed: it works by recording the local states of each process and 
then by merging them. The assumptions the algorithm makes are summarized 
above.  





Here we have a two-node system. P1 sends out two messages and then decides to initiate a 
snapshot. It saves its state, then sends out a marker message on the channel to p2. It then sends 
out another message. 



P2 receives the first two messages, then receives the marker message. This is its indication to 
save its state, so it does so. Since the third message was sent after p1 saved its state, there is no 
need for p2 to record it. 



In this example, p1 decides to start a snapshot, so it first saves its state, then sends out marker 
messages on all of its outgoing channels. Having done this, it sends message m1 on the channel to 
p2. 



P2 receives the marker message, which lets it know that it should take a snapshot. So it saves its 
state. It then receives message m1, but doesn’t record it in the snapshot (since it was sent after p1 
saved its state). The marker message to p3 is still in transit. In the meantime, p3 sends message 
m2 to p2. 



P2 receives message m2. Since it was sent before p3 recorded its state (which it hasn’t done yet), 
p2 records the message as part of the channel’s state. P3 finally receives the marker message from 
p1, so it records its state, and then sends a marker message on the channel to p2 to let p2 know 
that it has finally recorded its state. 



Finally, p2 receives p3’s marker message, thus letting it know that p3 has saved its state. Thus 
when m3 arrives, p2 does not record it. 



The algorithm can be defined using two state marking rules. The marker sending 
rule requires processes to send a marker along each of their outgoing links after 
they have saved their local state. The marker receiving rule requires a process that 
hasn’t yet recorded its state to do so, after the receipt of the first marker. It then 
starts noting the messages that it receives on the other incoming links. If a process 
receives a message after it has already saved its local state, then it records the 
state of that channel as the messages that it received on that channel since it saved 
its state. 

The algorithm can be initiated by any server assuming that the server has 
received an imaginary marker from some imaginary incoming link. Several 
processes can initiate the process concurrently. The algorithm works fine as long 
as the markers can be uniquely differentiated. 











The slide is Figure 14.11 from Coulouris, Dollimore, Kindberg, and Blair. We have two processes 
that trade in widgets. Process p1 has already send an order for 5 widgets (at $10 each) to p2, which 
is about to send a response message containing the widgets. 



Process p1 begins the snapshot algorithm and records its state: <$1000, 0>. The actual global 
state at this moment is shown in row 1. In row 2, p1 has sent a marker message along with an 
order for 10 more widgets. Before p2 receives either message, it responds, in line 3, to the earlier 
message with 5 widgets, and this response is processed by p3. Finally, in line 4, p2 receives the 
marker message and records its state: <$50, 1995>. Thus the recorded global snapshot is <<
$1000, 0>, <$50, 1995>>,  a state that never actually occurred. 



This slide is adapted from Figure 14.13 of Coulouris, Dollimore, Kindberg, and Blair. Sinit is the 
global state the system was in just prior to the beginning of execution of the snapshot algorithm. 
Sfinal is the global state the system was in when the algorithm terminated. Ssnap is the global state 
represented by the snapshot. The system went through the sequence of events e0, e1, … in going 
from Sinit to Sfinal. We claim that Ssnap is reachable from Sinit by the sequence of events e′0, e′1, … 
e′R-1,  and Sfinal is reachable from Ssnap by the sequence of events e′R, e′R+1, … e′N. 
Furthermore, e′0, e′1, … , e′R-1, e′R, e′R+1, … , e′N is a permutation of e0, e1, … , eN. Each of 
the events in e0, e1, … , eN took place in some process either before or after it recorded its state 
(i.e., produced a snapshot).  

 
Suppose that ei is a post-snapshot event at one process and ei+1 is a pre-snapshot event at 

another. It cannot be that ei → ei+1, since this would mean that the first is the sending of a 
message and the second is the receiving of the same message. Since ei is a post-snapshot event, a 
marker message would have had to precede the message, making the second event a post-
snapshot event, contrary to our assumption. Thus there is no causal relation between the two 
events and they may be swapped without violating happened-before relationships. By swapping 
such pairs of events, we can move all pre-snapshot events to the front of the sequence and all 
post-snapshot events to the rear. The pre-snapshot events are thus e′0, e′1, … , e′R-1, and the 
post-snapshot events are thus e′R, e′R+1, … , e′N. 





This slide is Figure 14.8 from Coulouris, Dollimore, Kindberg, and Blair. 
Case (a) above shows a distributed garbage collection example where process p1 

has two objects that have references to them (one local and one remote); and 
process p2 has one garbage object and another whose reference is in transit to p1. 
This example demonstrates that we also need to take into account the state of the 
communication channel when we talk about the global properties of a system.  

Case  (b) demonstrates a distributed deadlock scenario, where two processes are 
blocked waiting to hear from each other. If this is the case, then the processes will 
not be able to make any progress. Detecting deadlocks requires forming a waits-for 
graph and checking whether the graph has any cycles. 

Case (c) shows a distributed termination detection scenario. The problem here is 
to determine that a distributed algorithm has terminated. This involves more than 
just checking whether each process has halted. We need to also consider any 
activation messages that may be on their way to their destinations.   





Computing possibly φ and definitely φ are possible, though certainly time consuming. See 
Coulouris, Dollimore, Kindberg, and Blair, Section 14.6. 


