
 CS 138 IX–1 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

CS 138: Time

 CS 138 IX–2 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Topics

•  Clock Synchronization
•  Logical Clocks
•  Causality
•  Vector Clocks

 CS 138 IX–3 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Getting the Time

What time is
it?

[30 seconds later]
You mean …

now?

 CS 138 IX–4 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Analysis

tx yr yw yx tr

Your Timeline

Yogi’s Timeline

C(tr) = YW(tr)

YW(yw)

tx <= YW(yw) <= tr YW(tr) = [YW(yw), YW(yw) + (tr-tx)]

 CS 138 IX–5 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Using a Time Server

t1 t2 t3 t4 t5 t6 t7 t8

Client’s Timeline

Server’s Timeline

S(t4)

S(t8)?

•  S(t8) in [S(t4), S(t4) + (C(t8) – C(t1))] •  S(t8) in [S(t4), S(t4) + (C(t8) – C(t1) + r)] •  S(t8) in [S(t4), S(t4) + (C(t8) – C(t1) + r)(1+d)]

 CS 138 IX–6 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 500 1000 1500 2000 2500 3000 3500
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

P
in

g
 T

im
e

 (
m

s)

P
in

g
 T

im
e

 (
m

s)

’ping-brown.dat’
’ping-berkeley.dat’

Variability in Ping Times

 CS 138 IX–7 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Precision using HW time-stamping
(PTP Protocol)

 CS 138 IX–8 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Example: NTP

Ti-3

Ti-2 Ti-1

Ti
N1

N2

t t’

Goal: calculate offset O
a = Ti-2-Ti-3, b=Ti-1-Ti
di = (Ti-Ti-3) - (Ti-1 - Ti-2) = a-b;
oi = (a+b)/2 = (Ti-2+Ti-i)/2 – (Ti+Ti-3)/2
t = Ti-2-O -Ti-3 = a – O >= 0 -> a >= O
t’ = Ti-(Ti-1-O) = O – b >= 0 -> b <= O
b = (a+b)/2 – (a-b)/2 <= O <= (a+b)/2+(a-b)/2 = a
 oi- di/2 <= O <= oi + di/2

 CS 138 IX–9 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Network Time Protocol

Stratum 0

Stratum 1

Stratum 2

.

.

.

 CS 138 IX–10 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Nobody’s Perfect

•  Inaccuracy: T(t) - I(t) <= t <= T(t) + I(t)

 + r/(1-d) + r t2 >= t1 è T(t2) >= T(t1)

•  Drift: I(t2) <= d⋅(t2-t1) + I(t1) (a bound on I)
•  Resolution: each tick represents r seconds
•  Clocks are assumed always to make forward

progress

 CS 138 IX–11 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Getting Other Opinions

Client Server 1

Server 3

Server 2

What time is it? 3:31

3:30

3:29

 CS 138 IX–12 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Truth in Advertising

Client Server 1

Server 3

Server 2

What time is it? 3:31 ± .5 min.

3:30 ± 1 min.

3:29 ± 2 min.

 CS 138 IX–13 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Arriving At a Consensus

Server 1

Server 2

Server 3

Consensus

 CS 138 IX–14 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

A Liar

Server 4

3:33 ± .5 min.
Client Server 1

Server 3

Server 2

What time is it? 3:31 ± .5 min.

3:30 ± 1 min.

3:29 ± 2 min.

 CS 138 IX–15 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

What To Do?

Server 1

Server 2

Server 3

Server 4

Consensus ?

 CS 138 IX–16 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

At Most One Liar

Server 1

Server 2

Server 3

Server 4

Consensus

 CS 138 IX–17 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

At Most Two Liars

Server 1

Server 2

Server 3

Server 4

Consensus

1 & 2
2 & 3
1 & 3

 CS 138 IX–18 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

At Most Three Liars

Server 1

Server 2

Server 3

Server 4

Consensus

 CS 138 IX–19 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

DCE Time Service

Client

Server

Server

Server

Client

Client

Client

Client

Server

Server
Server

Server

Cell

LAN 1

LAN 2

Time
Provider

 CS 138 IX–20 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

What’s Time?

•  GMT
– determined by astronomical observations at

Greenwich
–  improved versions, accounting for

irregularities of earth’s rotation and orbit, are
UT0, UT1, UT2

•  International Atomic time (TAI)
– based on transitions of energy levels of

cesium atom
– synchronized with earth time in 1958
– earth has been running slow since then

-  UTC: leap seconds added as necessary to
adjust

 CS 138 IX–21 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

What’s Time? (Really …)

•  “Time is God’s way of keeping everything
from happening at once.”

– various sources
•  Timestamp events to determine order of their

occurrence
•  Problems

– doesn’t work if clocks either aren’t perfectly in
sync or don’t have sufficiently fine resolution

– an order might not be meaningful if two events
have no causal relationship

•  A → B iff A could possibly have had an effect
on B (pronounced A happened before B)

 CS 138 IX–22 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Logical Clocks (1)

0 3 6 9 12 15 18 21 24 27 30 33 36 39

0 5 10 15 20 25 30 35 40 45 50 55 60 65

0 10 20 30 40 50 60 70 80 90 100 110 120 130

a

b c

d e f

Invariant: if x h.b. y, T(x)<T(y)

 CS 138 IX–23 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Logical Clocks (2)

0

0

0

3

5

10

6

10

20

9

15

30

12

20

40

15

41

50

18

46

60

47

51

70

50

56

80

53

61

90

56

66

100

62

71

110

65

76

120

68

81

130

a

b c

d e f

 CS 138 IX–24 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Using Logical Timestamps

•  We can use Lamport Clocks to create a total
order of events agreed to by all processes

 CS 138 IX–25 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Distributed Banking

SFO PVD

add interest based
on current balance

deposit $1000

 CS 138 IX–26 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Total Order

•  Tie-breaking rule
– what if Ti(a) = Th(b)?
– a comes before b iff i<h

•  Total order for all events in a distributed
system

 CS 138 IX–27 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Totally Ordered Multicast

•  To send multicast:
–  tag message with sender’s timestamp (<time,

sender ID>)
-  sender receives own multicast

•  On receipt of message
– queue message in timestamp order
– multicast an acknowledgement

•  On receipt of acknowledgement
–  link to acknowledged message

•  Deliver message to application when
– message is at front of receive queue
– has been acknowledged by all

 CS 138 IX–28 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Totally Ordered Multicast

SFO(1) PVD(2)

Out
1: compute interest (1,1)

3: ack interest-1

6: ack deposit-1

In

2: compute interest (1,1)

4: ack interest-1
5: deposit $1000 (1,2)

7: ack deposit-1
8: ack deposit-2
9: ack interest-2

Out
1: deposit $1000 (1,2)

3 : ack deposit-2

6: ack interest-2

In

2 : deposit $1000 (1,2)

4: ack deposit-2
5: compute interest (1,1)

7: ack interest-2
8: ack interest-1
9: ack deposit-1

PVD must reorder queue once all acks are in

 CS 138 IX–29 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Mutual Exclusion

•  Central server
•  Logical clocks

 CS 138 IX–30 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Central-Server Mutual
Exclusion

b

a c

May I?

Smart
Object

May I?

May I?

 CS 138 IX–31 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Mutual Exclusion with Logical
Clocks

•  Requester
– multicast request with timestamp
– proceed when all other parties respond OK

•  Receiver of request
–  if neither using nor waiting for resource,

respond OK
–  if waiting for resource, respond OK if request’s

timestamp is lower than own, otherwise queue
request

–  if using resource, queue request
•  When finished

–  respond OK to queued requests

 CS 138 IX–32 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Mutex Exclusion (1)

b

a c

1:May I?

1:May I?

 CS 138 IX–33 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

a

Mutex Exclusion (2)

b

c

OK

OK Got It

 CS 138 IX–34 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Mutex Exclusion (3)

b

a c

2: May I? 2: May I?

Waiting:2

Got It

b:2

 CS 138 IX–35 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Mutex Exclusion (4)

b

a c

OK

Waiting:2

Got It

b:2

c

 CS 138 IX–36 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Mutex Exclusion (5)

b

a c

Waiting:2

Got It

b:2

3: May I?

3: May I?
Waiting:3

c:3

c:3

c

 CS 138 IX–37 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Mutex Exclusion (6)

b

a c

Waiting:2

b:2

Waiting:3

c:3

c:3

OK

OK

c

a

a

 CS 138 IX–38 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Mutex Exclusion (7)

b

a c
Waiting:3

c:3

Got It

a

 CS 138 IX–39 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Mutex Exclusion (8)

b

a c
Waiting:3

c:3

a

OK

b

 CS 138 IX–40 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Mutex Exclusion (9)

b

a c
Got It

 CS 138 IX–41 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Why Total Order is Important

a

b

c

a:1

a:1 ok

ok b:2

b:2
c:2

c:2

b:2
c:2

c:2

ok

ok

ok ok

“if waiting for resource, respond OK if request’s
timestamp is lower than own, otherwise queue request”
 b:2 < c:2

 CS 138 IX–42 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Causal Ordering

0

0

0

3

5

10

6

10

20

9

15

30

12

20

40

15

41

50

18

46

60

47

51

70

50

56

80

53

61

90

56

66

100

62

71

110

65

76

120

68

81

130
d

e f c g

 CS 138 IX–43 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Causality

•  How can event a have a causal effect on b?

a b

a

b

 CS 138 IX–44 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Concurrent Events

•  Events a and b are concurrent if neither of the
following are true:

a → b
b → a

 CS 138 IX–45 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Vector Clocks

•  VCi[i]
– number of events so far at process Pi

•  VCi[h] = k
– process Pi is aware of the first k events at Ph

a

d

i

(0,0,0)

(0,0,0)

(0,0,0)

(1,0,0)
(2,0,0)

(2,1,0)
(2,2,0)

(2,3,0)

(2,3,2)
(2,3,3)

h
(3,0,0)

P0

P1

P2

b

c f

g e

(0,0,1)

 CS 138 IX–46 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Rules …
1)  Initially, VCi[j] = 0, for i, j = 0, … , n-1
2)  Just before Pi timestamps an event, it sets

VCi[i] = VCi[i]+1
3)  Pi includes the current timestamp in every

message it sends
4)  When Pi receives a timestamp t in a

message, it sets
VCi[j] = max(VCi[j], t[j]), for j = 0, … , n-1

5)  Comparing clocks:
1)  If all components of VCi <= VCj and at least

one component is smaller ó i happens
before j

2)  i and j are concurrent iff neither VCi <= VCj
and VCj <= VCi

 CS 138 IX–47 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Causally Ordered Multicast

•  Application of vector clocks
–  the only event is ‘sending message’
– all messages are multicast to all
– messages carry “timestamp” = sender’s VC

•  Strategy
– Ph receives multicast message m from Pi

– deliver m to application when:
-  timestamp(m)[i] = VCh[i] + 1

• next expected message from Pi

-  timestamp(m)[k] ≤ VCh[k], for all k≠i
• Ph has seen all events Pi had seen when

it sent the message

 CS 138 IX–48 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Causally Ordered Multicast (1)

(1,0,0)

(1,0,0)

(1,1,0)

(0,0,0)
(1,0,0)

middleware
application

(1,1,0)

(1,1,0)

m1

m2

(1,1,0)
(1,0,0)

P0

P1

P2

 CS 138 IX–49 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Causally Ordered Multicast (2)

(1,0,0,0)

(0,0,1,0)

(1,0,0,0)

(1,0,1,0)

m1

m2

(0,0,1,0)
(1,0,1,0)

(1,0,1,0)

P0

P1

P2

P3

(1,0,1,0)

 CS 138 IX–50 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Not covered in class

•  These won’t be in the exams, but are another
example of when you can use timestamps

 CS 138 IX–51 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

File Transactions

•  Open file
•  Write first item

– allocate space
– update inode
– write data

•  Write second item
– allocate space
– update inode
– write data

•  Close file

 CS 138 IX–52 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Example Strategies

•  Shadow inodes
•  Logging

– Ext3, NTFS
•  Optimism

 CS 138 IX–53 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

0
1
2
3
4
5
6
7
8
9
10
11
12

Shadow Inodes

0
1
2
3
4
5
6
7
8
9
10
11
12

 CS 138 IX–54 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Optimistic Concurrency Control

“ ’tis better to ask forgiveness than permission”

– Perform transaction without bothering with
concurrency control

– Check for conflicts afterwards:
-  if none, commit transaction
-  otherwise abort transaction (and start over)

– Example:
-  shadow inodes without mutually exclusive

opens
-  if another shadow with modifications exists

on close, abort without applying changes

 CS 138 IX–55 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Optimistic Concurrency Control
with Timestamps

•  Each transaction, when started, is assigned the current
timestamp; transactions are ordered by their
timestamps

•  Each file has last-read and last-write timestamps
identifying the last committed transaction that read or
wrote it

•  If things are correctly ordered, whenever a transaction
accesses a file, the file’s timestamps will be earlier
than the transaction’s

•  There’s a problem if the transaction is writing and the
file’s read or write timestamp is later than the
transaction’s, or if the transaction is reading and the
file’s write timestamp is later than the transaction’s

•  In case of problem, abort

 CS 138 IX–56 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Example (1)
0
1
2
3
4
5
6
7
8
9
10
11
12

x last read:
0

last write:
0

 CS 138 IX–57 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Example (2)
0
1
2
3
4
5
6
7
8
9
10
11
12

x last read:
0

last write:
0

0
1
2
3
4
5
6
7
8
9
10
11
12

x’

timestamp:
1

0
1
2
3
4
5
6
7
8
9
10
11
12

timestamp:
2

x’’

0
1
2
3
4
5
6
7
8
9
10
11
12

timestamp:
3

 CS 138 IX–58 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Example (3)
0
1
2
3
4
5
6
7
8
9
10
11
12

x last read:
0

last write:
0

0
1
2
3
4
5
6
7
8
9

10
11
12

x’

timestamp: 1
never mind

0
1
2
3
4
5
6
7
8
9
10
11
12

timestamp:
2

x’’

0
1
2
3
4
5
6
7
8
9
10
11
12

timestamp:
3

 CS 138 IX–59 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Example (4)
0
1
2
3
4
5
6
7
8
9
10
11
12

x last read:
0

last write:
0

0
1
2
3
4
5
6
7
8
9
10
11
12

timestamp:
2

x’’

0
1
2
3
4
5
6
7
8
9
10
11
12

timestamp:
3

0
1
2
3
4
5
6
7
8
9
10
11
12

x’’’

timestamp:
4

 CS 138 IX–60 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

0
1
2
3
4
5
6
7
8
9
10
11
12

timestamp:
3

Example (5)
0
1
2
3
4
5
6
7
8
9
10
11
12

x last read:
0

last write:
0

0
1
2
3
4
5
6
7
8
9
10
11
12

timestamp:
2

x’’

0
1
2
3
4
5
6
7
8
9
10
11
12

x’’’

timestamp:
4

last read:
3

0
1
2
3
4
5
6
7
8
9
10
11
12

timestamp:
3

 CS 138 IX–61 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Example (6)
0
1
2
3
4
5
6
7
8
9
10
11
12

x last read:
3

last write:
0

timestamp:
2
timestamp:
2 DAMN!!

0
1
2
3
4
5
6
7
8
9
10
11
12

x’’

0
1
2
3
4
5
6
7
8
9
10
11
12

x’’’

timestamp:
4

 CS 138 IX–62 Copyright © 2016 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Example (7)
0
1
2
3
4
5
6
7
8
9
10
11
12

x last read:
3

last write:
0

0
1
2
3
4
5
6
7
8
9
10
11
12

x’’’

timestamp:
4

last write:
4

