
This material is partially covered in Chapter 14 of Coulouris, Dollimore, Kindberg, and Blair.

It is reported of Yogi Berra, the old-time baseball player, that he was once asked, “What time is
it?” After thinking for a bit, he responded, “You mean ... now?” In this spirit, we talk about how
nodes within a network synchronize their clocks. We assume that there are one or more time
servers on the network whose clocks are presumed to be accurate. Thus any client can ask such a
server for the correct time, but unfortunately a delay is involved both in propagating the request to
the server and in getting the response from the server. Thus the server indeed gives you the
correct time; the problem is that you don’t really know when this was the correct time.

(Other Yogi Berra’isms include: “if you come to a fork in the road, take it”, “you can observe a lot
by watching”, “it was déjà vu all over again”, “you should always go to other people’s funerals,
otherwise they won’t come to yours”, “I really didn’t say everything I said”.)

Suppose, at a better moment, we asked Yogi for the correct time, and
after thinking about it for some time he eventually responded, “3:30.”
Assuming that Yogi did indeed consult his watch to determine his
answer and that his watch was more or less correct, how can we
make use of his response?
In the picture, let tx represent the time at which you uttered your

request to Yogi. Some time later, yr , the request arrived at Yogi’s ears.
He thought about it for a bit and then, at time yw , glanced at his
watch. He thought some more and, at time yx, uttered the time he had
recently read from his watch. At time tr his words reached your ears.
So you know what Yogi’s watch read at time yw, you just aren’t certain
how far in the past yw was.
Assuming that you have a watch and the purpose of your query was

merely to set it, you can measure the amount of time that elapsed
from tx to tr. Let YW(x) represent what Yogi’s watch reads at time x;
thus you know YW(yw) and what you would like to know is YW(tr). If
we assume that yw could have appeared any place within the interval
[tx, tr], then your estimate of YW(tr) is somewhere within the interval
[YW(yw), YW(yw) + (tr–tx)].

Consider the issues involved in keeping computer clocks in sync by means of a time-
server computer. For example, suppose a client wishes to update its clock by obtaining the
correct time from the server.

At time t1 the client application makes the request to query the server for the time of day.
At time t2 this request is actually transmitted.
At time t3 the request arrives at the server, and
 at time t4 the request is passed to the server routine that deals with time and the clock

is read.
 At t5 this routine requests that the time be transferred to the client,
at time t6 the time is actually transferred,
at time t7 it arrives at the client, and
 at time t8 it is finally received by the original application.

Let S(t4) be the value of the server’s clock at time t4. The client is, of course, interested in

S(t8). Let C(x) be the value of the client’s clock at time x. The time that elapsed between
when the client made its request and when it received the response is C(t8) - C(t1).

Thus what the client learns from this transaction is that S(t8) is in the range [S(t4), S(t4) +
(C(t8)-C(t1))].

There are at least two problems with the above computation. First of all, the client’s (and
the server’s) clock is not continuous; it “ticks” in discrete units. Let ρ be the length of a
clock tick. If t1 occurred just after a tick and t8 occurred just before a tick, then the actual
value of t8 - t1 could be as great as C(t8) - C(t1) + ρ. A further problem is that the client’s
clock may drift over time. Let us assume that this drift rate is bounded by a constant δ.
Thus an upper bound on t8 - t1 is (C(t8)-C(t1) + ρ)(1 + δ).

 Our final estimate of S(t8) is [S(t4), S(t4) + (C(t8)-C(t1) + ρ)(1 + δ)].
What are some typical numbers? ρ might be ten milliseconds, the actual communication

delay might be 20 milliseconds, and δ might be .0004.

How does this affect the previous computation?
How do we minimize the effect of this variability? (Take multiple measurements and take the

MIN of the total delta)

7	

di is the difference between the intervals in the two servers, and thus corresponds to the
time spent in the network

oi is the offset between the average of the two intervals
We use a and b here just to make the intermediate steps shorter, but the gist of the

algorithm is that the interval in N2 can’t start before the interval in N1, and can’t end after
the end of N1.

The Internet’s Network Time Protocol (NTP) also uses the Marzullo approach, though
things are organized a bit differently. See http://www.eecis.udel.edu/~mills/ntp/html/
index.html#docs for details. Time servers are organized into strata, depending on their
“distance” from the ultimate time source. Stratum 0 is the collection of time sources
themselves, stratum 1 is the collection of servers connected directly to time sources, etc.
Servers of one stratum connect to a number of servers/devices at the next lower stratum,
rule out liars, and average the time of apparent truth-sayers. (In NTP terminology, liars are
known as “falsetickers” and truthful servers are “truechimers.”) Windows uses a simplified
version of NTP known as SNTP (simple NTP) — clients contact just one server. Linux and
most other Unix implementations use the full-blown NTP protocol, even for clients. Brown
University provides a stratum-2 time server at ntp.brown.edu.

Here we introduce some terminology so that we can be precise about how imperfect things are.
The inaccuracy of a clock is a bound on the error of a clock as a function of time; thus a clock
does not tell us precisely what time it is, but rather that the correct time lies somewhere within an
interval.

Unfortunately the inaccuracy of a clock changes with time. We don’t know precisely what this
change is, but we can place a bound on the rate of change. This bound, which is assumed to be
constant, is known as the drift. Clocks on digital computers tend to be counters, with each tick
indicating that a certain amount of time has passed. The length of time corresponding to each tick
is known as the resolution.

We assume that clocks always make forward progress. What this means is that the clock will
tick if we wait long enough, and that it never ticks “backwards.” How long do we have to wait for a
clock to tick? We know that each tick represents the passage of ρ seconds, but this is ρ seconds as
measured by the clock. How much time does this correspond to in reality? Let t1 and t2 represent
two instants in “real time.” From our definition of inaccuracy, we know that t2 - t1 is no greater
than T(t2) + I(t2) - (T(t1) - I(t1)). This, in turn, given our definition of drift (δ), is no greater than T(t2) +
δ⋅(t2 - t1) + 2⋅I(t1) - T(t1). If we let T(t2) - T(t1) be ρ, the clock resolution, and if we assume that T(t1) is
the correct time, then t2 - t1 is no greater than ρ + δ⋅(t2 - t1). Thus the duration of the time interval,
t2 - t1, required to insure that the time measured by the clock is at least one clock tick (ρ), is no
greater than ρ/(1 - δ).

A client might decide to improve its chances of getting the correct time by consulting a
number of servers and then somehow “averaging” the results. However, if each server gives
it a different result (and each server claims to be correct), there is no basis by which
averaging can be applied.

A responsible server will reply not only with what it considers to be the correct time but
also with a bound on the accuracy of this time estimate. Thus the client obtains a set of
intervals from which it can determine a current time interval that is tighter than any
interval obtained from individual servers.

If each server has supplied a correct interval representing the current time, then the
current time must lie in the intersection of all of the servers’ intervals. Though we don’t
know exactly where this point is, the client can use the intersection interval as its current
time interval (since the intersection interval contains the correct time).

One or more of the servers might be totally wrong about the time of day.

The intersection of these intervals is null. If we assume that there is at most one faulty
server, then any point contained in at least three of the intervals can represent the correct
time.

 In general, if we have m servers and at most f of them are faulty, then any point
contained in at least m - f of the time intervals can be correct.

If there is at most one liar, then at least three of the servers must be telling the truth. In
this case, the truth-sayers must be the first three servers and the consensus is as before.

However, if all we can determine is that there are at most two liars, then we must look at
possible pairs of truth-sayers. Server 4 is still ruled out, but the two truth-sayers might be
1 and 2, or 2 and 3, or 1 and 3. Thus the correct time lies in the union of their
intersections.

If all we can say is that there are at most three liars, then any one of the servers might
be telling the truth. In this case, the correct time lies in the union of all four intervals,
resulting in a disjoint interval.

The basic approach to clock synchronization that we just discussed is due to Keith
Marzullo: K. A. Marzullo. Maintaining the Time in a Distributed System: An Example of a
Loosely-Coupled Distributed Service. Ph.D. dissertation, Stanford University, Department of
Electrical Engineering, February 1984.

The DCE Distributed Time Service (DTS), based on the Digital Time Synchronization
Service (DTSS) specification, is provided by a collection of clerks and time servers. Clerks
reside on individual computers and are responsible for maintaining the time for their local
computers. They contact the time servers, acting as clients, to obtain the information
necessary to keep their clocks reasonably accurate.

Time servers fall into two categories: local time servers and global time servers. A
collection of local time servers is responsible for keeping the time on an individual LAN.
(LAN, in this context, probably means local area network, but really means a collection of
computers which are relatively close to one another (in terms of communication delays).)
These servers periodically synchronize their clocks with one another’s. On a more frequent
basis, clerks synchronize with (at least) a subset of the local time servers’ clocks and,
possibly, with some global servers.

Global time servers are time servers in other LANs (within the cell) that clerks and local
time servers may contact if additional sources of time information are needed. The idea is
that local time servers are, with respect to communication time, near one another and the
clerks, while global time servers are somewhat farther away.

The ultimate source of time is the time provider (TP). This provides the time along with a
(presumably tiny) inaccuracy. It might be an atomic clock, or some other time service such
as NTP (Network Time Protocol) of the Internet. A time server synchronizes with a TP if one
is available (otherwise it synchronizes with other time servers).

UTC is pronounced coordinated universal time in English and temps universel coordonne
in French. “UTC” was chosen apparently so as not to show favoritism to either language.
To find the official US time, go to http://www.time.gov/timezone.cgi?Eastern/d/-5/java.

According to Wikipedia, the quote is “variously attributed to Woody Allen, Albert Einstein, John
Archibald Wheeler, and Anonymous.”

In many situations it’s not so important that we keep our clocks in perfect synchrony,
but that we be able to consistently determine the order of events. In the slide are time lines
for three machines. The arrows represent messages traveling from one machine to another.
If a is one such message, then sa represents the sending of a and ra represents the
receiving of a. Ti is the clock function of machine i. Then Ti(sa) is the time that a was
transmitted according to machine 1’s clock. Assuming our clocks are well behaved, T1(sa) <
T1(ra). Since message a was transmitted from machine 1 to machine 2, it makes sense for
T1(sa) < T2(ra). But look at message c in the slide. We certainly want T3(sc) < T2(rc), but the
clocks of the machines 2 and 3 are a bit out of sync, so this is not the case. Even if we use
the clock synchronization techniques we discussed earlier, there still is no guarantee that
the clocks will be close enough in sync for the desired inequality to hold. What we need is
some way of guaranteeing that if event x on machine i has a causal effect on event y
on machine j, then Ti(x) < Tj(y). Note that it’s not important that our clock functions
actually give us time—sequence numbers are good enough.

The approach used to solve this problem is due to Leslie Lamport. When one sends a
message, one should include the current time along with the message. Then when you
receive a message, you should make certain that the current time as reported by your
clock is greater than the timestamp supplied with the message. If not, you should then
advance your clock so that it does report a time greater than the timestamp supplied
with the message. This simple procedure ensures us that the simple inequality of the
previous slide holds, as long as causality is due only to messages. If it is important that all
events have unique timestamps, ties are broken by comparing process IDs.

Both the San Francisco and the Providence branches of the bank have a complete copy of the
database. The San Francisco office multicasts a request to add to your account the accrued
interest based on your current balance. The Providence office multicasts a request to deposit
$1000 into your account. It certainly matters to you which action takes place first. It matters to
both you and the bank that whatever order is taken, the two sites agree on the order.

(1,2) means operation 1, id 2.
Note that neither SFO nor PVD can deliver operations that are in their in queues to their

applications until they’ve been ack’d by both parties. PVD must reorder its in queue and deliver
the compute-interest request from SFO before its own deposit request.

This algorithm is due to Ricart and Agrawalla, and is an optimization of the mutual exclusion
algorithm presented by Lamport in the 78 paper.

The logical-clocks approach doesn’t reflect causality. If m happens before n, then T(m) <
T(n).

 But the converse is not necessarily true: T(m) < T(n) does not necessarily imply that m
happens before n.

 In particular, even though T(creceive)<T(dsend), there really is no causality relation between
the two events.

See Coulouris, Dollimore, Kindberg and Blair, page 609, for discussion.

This is from page 609 of the textbook.
Thanks to Alex Kleiman for catching the error on the condition for two events to be concurrent.

Note that m’s timestamp is what Pi’s vector clock was when the message was sent.

Here P0 sends multicast message m1 to P1 and P2. P1 receives the message first, then sends its
own multicast m2, which arrives at P2 before m1. Middleware must delay giving m2 to the
application until it has received m1.

Here P0 sends multicast message m1 to P1, P2, and P3. P2 independently sends multicast message
m2 to P0, P1, and P3. Since the messages are not causally related, they may be delivered in
different orders to P1 and P3. Causal ordering is different from total ordering!

Total ordering imposes one total order that is consistent with the clocks.
Causal ordering enables each process to detect whether two messages are causally related or

concurrent. If messages m1 and m2 would apply conflicting modifications to an object, for
example, the fact that they are concurrent allows the middleware to detect the conflict and ask the
user what to do.

As an application of logical clocks we look at implementing transactions for a file system.
An example is shown on the slide: we are appending a record consisting of two items to the
end of a file.

A simple example of the use of atomic transactions with file systems is a technique
known as “shadow inodes.” When one opens a file for write (which, necessarily, must be
done under mutual exclusion), a copy of the file’s inode is created (in particular, including
the disk map), called the shadow inode. Operations on the file involve this copy of the
inode. If a block of the file is modified in the direct portion of the file, then, much as with
copy-on-write techniques, a copy of the original block is made and that copy is modified
and linked to the shadow inode. Analogous techniques are used in the indirect portions of
the file.

When the file is closed, its inode is replaced with the shadow and all no-longer-
referenced blocks are deleted.

An approach that works quite well for concurrency control when conflicts are rare is
optimistic concurrency control: forge ahead blindly without worrying about anything until
the transaction is about to commit, then worry—at this point check for conflicts and abort
if any are found. For example, if this is a transaction involving files, a record is kept of all
files that were used in the transaction. When it comes time to commit, a check is made to
see if any of these files were involved in other, recently completed transactions. If so, our
transaction is aborted, otherwise it commits.

A variation of the optimistic approach takes advantage of logical clocks. This approach
has the advantage in that it discovers conflicts somewhat more quickly than that outlined
on the previous page.

As an example of optimistic concurrency control with timestamps, we again look at the
use of shadow inodes. Here we have a file with a single direct block, whose last-read and
last-write timestamps are 0.

Now two transactions start operating on the file. The first is given a timestamp of 1, the
other a timestamp of 2. Both transactions modify the file. Then a third transaction, with
timestamp 3 starts on the file, but is merely reading it. Since neither of the write
transactions have committed, the read transaction uses data from the timestamp-0
version of the file.

At this point, the first transaction aborts (and thus doesn’t commit and doesn’t modify
the file).

Now another transaction starts up and modifies the file.

Transaction 3 commits and thus sets the last-read timestamp of the file.

Transaction 2 tries to continue but discovers that the file’s last-read timestamp is more
recent than the transaction, and it thus must abort. If transaction 2 were allowed to
commit, then its effect should have happened before transaction 3. However, transaction 3
has read data that was subsequently modified by transaction 2.

Finally, transaction 4 completes. Since its timestamp is more recent than the file’s last-
read and last-write timestamps, it’s allowed to commit.

