
This material is partially covered in Chapter 14 of  Coulouris, Dollimore, Kindberg, and Blair. 



  



It is reported of Yogi Berra, the old-time baseball player, that he was once asked, “What time is 
it?” After thinking for a bit, he responded, “You mean ... now?” In this spirit, we talk about how 
nodes within a network synchronize their clocks. We assume that there are one or more time 
servers on the network whose clocks are presumed to be accurate. Thus any client can ask such a 
server for the correct time, but unfortunately a delay is involved both in propagating the request to 
the server and in getting the response from the server. Thus the server indeed gives you the 
correct time; the problem is that you don’t really know when this was the correct time. 

(Other Yogi Berra’isms include: “if you come to a fork in the road, take it”, “you can observe a lot 
by watching”, “it was déjà vu all over again”, “you should always go to other people’s funerals, 
otherwise they won’t come to yours”, “I really didn’t say everything I said”.) 



Suppose, at a better moment, we asked Yogi for the correct time, and 
after thinking about it for some time he eventually responded, “3:30.” 
Assuming that Yogi did indeed consult his watch to determine his 
answer and that his watch was more or less correct, how can we 
make use of his response? 
In the picture, let tx represent the time at which you uttered your 

request to Yogi. Some time later, yr , the request arrived at Yogi’s ears. 
He thought about it for a bit and then, at time yw , glanced at his 
watch. He thought some more and, at time yx, uttered the time he had 
recently read from his watch. At time tr his words reached your ears. 
So you know what Yogi’s watch read at time yw, you just aren’t certain 
how far in the past yw was. 
Assuming that you have a watch and the purpose of your query was 

merely to set it, you can measure the amount of time that elapsed 
from tx to tr. Let YW(x) represent what Yogi’s watch reads at time x; 
thus you know YW(yw) and what you would like to know is YW(tr). If 
we assume that yw could have appeared any place within the interval 
[tx, tr], then your estimate of YW(tr) is somewhere within the interval 
[YW(yw), YW(yw) + (tr–tx)]. 



Consider the issues involved in keeping computer clocks in sync by means of a time-
server computer. For example, suppose a client wishes to update its clock by obtaining the 
correct time from the server.  

At time t1 the client application makes the request to query the server for the time of day.  
At time t2 this request is actually transmitted.  
At time t3 the request arrives at the server, and 
 at time t4 the request is passed to the server routine that deals with time and the clock 

is read. 
 At t5 this routine requests that the time be transferred to the client,  
at time t6 the time is actually transferred,  
at time t7 it arrives at the client, and 
 at time t8 it is finally received by the original application.  
 
Let S(t4) be the value of the server’s clock at time t4. The client is, of course, interested in 

S(t8). Let C(x) be the value of the client’s clock at time x. The time that elapsed between 
when the client made its request and when it received the response is C(t8) - C(t1).  

Thus what the client learns from this transaction is that S(t8) is in the range [S(t4), S(t4) + 
(C(t8)-C(t1))]. 

There are at least two problems with the above computation. First of all, the client’s (and 
the server’s) clock is not continuous; it “ticks” in discrete units. Let ρ be the length of a 
clock tick. If t1 occurred just after a tick and t8 occurred just before a tick, then the actual 
value of t8 - t1 could be as great as C(t8) - C(t1) + ρ. A further problem is that the client’s 
clock may drift over time. Let us assume that this drift rate is bounded by a constant δ. 
Thus an upper bound on t8 - t1 is (C(t8)-C(t1) + ρ)(1 + δ). 

 Our final estimate of S(t8) is [S(t4), S(t4) + (C(t8)-C(t1) + ρ)(1 + δ)]. 
What are some typical numbers? ρ might be ten milliseconds, the actual communication 

delay might be 20 milliseconds, and δ might be .0004. 



How does this affect the previous computation? 
How do we minimize the effect of this variability? (Take multiple measurements and take the 

MIN of the total delta) 
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di is the difference between the intervals in the two servers, and thus corresponds to the 
time spent in the network 

oi is the offset between the average of the two intervals 
We use a and b here just to make the intermediate steps shorter, but the gist of the 

algorithm is that the interval in N2 can’t start before the interval in N1, and can’t end after 
the end of N1. 



The Internet’s Network Time Protocol (NTP) also uses the Marzullo approach, though 
things are organized a bit differently. See http://www.eecis.udel.edu/~mills/ntp/html/
index.html#docs for details. Time servers are organized into strata, depending on their 
“distance” from the ultimate time source. Stratum 0 is the collection of time sources 
themselves, stratum 1 is the collection of servers connected directly to time sources, etc. 
Servers of one stratum connect to a number of servers/devices at the next lower stratum, 
rule out liars, and average the time of apparent truth-sayers. (In NTP terminology, liars are 
known as “falsetickers” and truthful servers are “truechimers.”) Windows uses a simplified 
version of NTP known as SNTP (simple NTP) — clients contact just one server. Linux and 
most other Unix implementations use the full-blown NTP protocol, even for clients. Brown 
University provides a stratum-2 time server at ntp.brown.edu. 

 



Here we introduce some terminology so that we can be precise about how imperfect things are. 
The inaccuracy of a clock is a bound on the error of a clock as a function of time; thus a clock 
does not tell us precisely what time it is, but rather that the correct time lies somewhere within an 
interval. 

Unfortunately the inaccuracy of a clock changes with time. We don’t know precisely what this 
change is, but we can place a bound on the rate of change. This bound, which is assumed to be 
constant, is known as the drift. Clocks on digital computers tend to be counters, with each tick 
indicating that a certain amount of time has passed. The length of time corresponding to each tick 
is known as the resolution. 

We assume that clocks always make forward progress. What this means is that the clock will 
tick if we wait long enough, and that it never ticks “backwards.” How long do we have to wait for a 
clock to tick? We know that each tick represents the passage of ρ seconds, but this is ρ seconds as 
measured by the clock. How much time does this correspond to in reality? Let t1 and t2 represent 
two instants in “real time.” From our definition of inaccuracy, we know that t2 - t1 is no greater 
than T(t2) + I(t2) - (T(t1) - I(t1)). This, in turn, given our definition of drift (δ), is no greater than T(t2) + 
δ⋅(t2 - t1) + 2⋅I(t1) - T(t1). If we let T(t2) - T(t1) be ρ, the clock resolution, and if we assume that T(t1) is 
the correct time, then t2 - t1 is no greater than ρ + δ⋅(t2 - t1). Thus the duration of the time interval, 
t2 - t1, required to insure that the time measured by the clock is at least one clock tick (ρ), is no 
greater than ρ/(1 - δ). 



A client might decide to improve its chances of getting the correct time by consulting a 
number of servers and then somehow “averaging” the results. However, if each server gives 
it a different result (and each server claims to be correct), there is no basis by which 
averaging can be applied. 



A responsible server will reply not only with what it considers to be the correct time but 
also with a bound on the accuracy of this time estimate. Thus the client obtains a set of 
intervals from which it can determine a current time interval that is tighter than any 
interval obtained from individual servers. 



If each server has supplied a correct interval representing the current time, then the 
current time must lie in the intersection of all of the servers’ intervals. Though we don’t 
know exactly where this point is, the client can use the intersection interval as its current 
time interval (since the intersection interval contains the correct time). 



One or more of the servers might be totally wrong about the time of day.  



The intersection of these intervals is null. If we assume that there is at most one faulty 
server, then any point contained in at least three of the intervals can represent the correct 
time. 

 In general, if we have m servers and at most f of them are faulty, then any point 
contained in at least m - f of the time intervals can be correct. 



If there is at most one liar, then at least three of the servers must be telling the truth. In 
this case, the truth-sayers must be the first three servers and the consensus is as before. 



However, if all we can determine is that there are at most two liars, then we must look at 
possible pairs of truth-sayers. Server 4 is still ruled out, but the two truth-sayers might be 
1 and 2, or 2 and 3, or 1 and 3. Thus the correct time lies in the union of their 
intersections. 



If all we can say is that there are at most three liars, then any one of the servers might 
be telling the truth. In this case, the correct time lies in the union of all four intervals, 
resulting in a disjoint interval. 



The basic approach to clock synchronization that we just discussed is due to Keith 
Marzullo: K. A. Marzullo. Maintaining the Time in a Distributed System: An Example of a 
Loosely-Coupled Distributed Service. Ph.D. dissertation, Stanford University, Department of 
Electrical Engineering, February 1984.  

The DCE Distributed Time Service (DTS), based on the Digital Time Synchronization 
Service (DTSS) specification, is provided by a collection of clerks and time servers. Clerks 
reside on individual computers and are responsible for maintaining the time for their local 
computers. They contact the time servers, acting as clients, to obtain the information 
necessary to keep their clocks reasonably accurate. 

Time servers fall into two categories: local time servers and global time servers. A 
collection of local time servers is responsible for keeping the time on an individual LAN. 
(LAN, in this context, probably means local area network, but really means a collection of 
computers which are relatively close to one another (in terms of communication delays).) 
These servers periodically synchronize their clocks with one another’s. On a more frequent 
basis, clerks synchronize with (at least) a subset of the local time servers’ clocks and, 
possibly, with some global servers. 

Global time servers are time servers in other LANs (within the cell) that clerks and local 
time servers may contact if additional sources of time information are needed. The idea is 
that local time servers are, with respect to communication time, near one another and the 
clerks, while global time servers are somewhat farther away. 

The ultimate source of time is the time provider (TP). This provides the time along with a 
(presumably tiny) inaccuracy. It might be an atomic clock, or some other time service such 
as NTP (Network Time Protocol) of the Internet. A time server synchronizes with a TP if one 
is available (otherwise it synchronizes with other time servers). 



UTC is pronounced coordinated universal time in English and temps universel coordonne 
in French. “UTC” was chosen apparently so as not to show favoritism to either language. 
To find the official US time, go to http://www.time.gov/timezone.cgi?Eastern/d/-5/java. 



According to Wikipedia, the quote is “variously attributed to Woody Allen, Albert Einstein, John 
Archibald Wheeler, and Anonymous.” 



In many situations it’s not so important that we keep our clocks in perfect synchrony, 
but that we be able to consistently determine the order of events. In the slide are time lines 
for three machines. The arrows represent messages traveling from one machine to another. 
If a is one such message, then sa represents the sending of a and ra represents the 
receiving of a. Ti is the clock function of machine i. Then Ti(sa) is the time that a was 
transmitted according to machine 1’s clock. Assuming our clocks are well behaved, T1(sa) < 
T1(ra). Since message a was transmitted from machine 1 to machine 2, it makes sense for 
T1(sa) < T2(ra). But look at message c in the slide. We certainly want T3(sc) < T2(rc), but the 
clocks of the machines 2 and 3 are a bit out of sync, so this is not the case. Even if we use 
the clock synchronization techniques we discussed earlier, there still is no guarantee that 
the clocks will be close enough in sync for the desired inequality to hold. What we need is 
some way of guaranteeing that if event x on machine i has a causal effect on event y 
on machine j, then Ti(x) < Tj(y). Note that it’s not important that our clock functions 
actually give us time—sequence numbers are good enough. 



The approach used to solve this problem is due to Leslie Lamport. When one sends a 
message, one should include the current time along with the message. Then when you 
receive a message, you should make certain that the current time as reported by your 
clock is greater than the timestamp supplied with the message. If not, you should then 
advance your clock so that it does report a time greater than the timestamp supplied 
with the message. This simple procedure ensures us that the simple inequality of the 
previous slide holds, as long as causality is due only to messages. If it is important that all 
events have unique timestamps, ties are broken by comparing process IDs. 





Both the San Francisco and the Providence branches of the bank have a complete copy of the 
database. The San Francisco office multicasts a request to add to your account the accrued 
interest based on your current balance. The Providence office multicasts a request to deposit 
$1000 into your account. It certainly matters to you which action takes place first. It matters to 
both you and the bank that whatever order is taken, the two sites agree on the order. 







(1,2) means operation 1, id 2. 
Note that neither SFO nor PVD can deliver operations that are in their in queues to their 

applications until they’ve been ack’d by both parties. PVD must reorder its in queue and deliver 
the compute-interest request from SFO before its own deposit request.  







This algorithm is due to Ricart and Agrawalla, and is an optimization of the mutual exclusion 
algorithm presented by Lamport in the 78 paper. 























The logical-clocks approach doesn’t reflect causality. If m happens before n, then T(m) < 
T(n). 

 But the converse is not necessarily true: T(m) < T(n) does not necessarily imply that m 
happens before n. 

 In particular, even though T(creceive)<T(dsend), there really is no causality relation between 
the two events. 







See Coulouris, Dollimore, Kindberg and Blair, page 609, for discussion. 



This is from page 609 of the textbook. 
Thanks to Alex Kleiman for catching the error on the condition for two events to be concurrent. 



Note that m’s timestamp is what Pi’s vector clock was when the message was sent. 



Here P0 sends multicast message m1 to P1 and P2. P1 receives the message first, then sends its 
own multicast m2, which arrives at P2 before m1. Middleware must delay giving m2 to the 
application until it has received m1. 



Here P0 sends multicast message m1 to P1, P2, and P3. P2 independently sends multicast message 
m2 to P0, P1, and P3. Since the messages are not causally related, they may be delivered in 
different orders to P1 and P3. Causal ordering is different from total ordering! 

 
Total ordering imposes one total order that is consistent with the clocks.  
Causal ordering enables each process to detect whether two messages are causally related or 

concurrent. If messages m1 and m2 would apply conflicting modifications to an object, for 
example, the fact that they are concurrent allows the middleware to detect the conflict and ask the 
user what to do. 





As an application of logical clocks we look at implementing transactions for a file system. 
An example is shown on the slide: we are appending a record consisting of two items to the 
end of a file. 



  



A simple example of the use of atomic transactions with file systems is a technique 
known as “shadow inodes.” When one opens a file for write (which, necessarily, must be 
done under mutual exclusion), a copy of the file’s inode is created (in particular, including 
the disk map), called the shadow inode. Operations on the file involve this copy of the 
inode. If a block of the file is modified in the direct portion of the file, then, much as with 
copy-on-write techniques, a copy of the original block is made and that copy is modified 
and linked to the shadow inode. Analogous techniques are used in the indirect portions of 
the file. 

When the file is closed, its inode is replaced with the shadow and all no-longer-
referenced blocks are deleted. 



An approach that works quite well for concurrency control when conflicts are rare is 
optimistic concurrency control: forge ahead blindly without worrying about anything until 
the transaction is about to commit, then worry—at this point check for conflicts and abort 
if any are found. For example, if this is a transaction involving files, a record is kept of all 
files that were used in the transaction. When it comes time to commit, a check is made to 
see if any of these files were involved in other, recently completed transactions. If so, our 
transaction is aborted, otherwise it commits. 



A variation of the optimistic approach takes advantage of logical clocks. This approach 
has the advantage in that it discovers conflicts somewhat more quickly than that outlined 
on the previous page. 

 



As an example of optimistic concurrency control with timestamps, we again look at the 
use of shadow inodes. Here we have a file with a single direct block, whose last-read and 
last-write timestamps are 0. 



Now two transactions start operating on the file. The first is given a timestamp of 1, the 
other a timestamp of 2. Both transactions modify the file. Then a third transaction, with 
timestamp 3 starts on the file, but is merely reading it. Since neither of the write 
transactions have committed, the read transaction uses data from the timestamp-0 
version of the file. 



At this point, the first transaction aborts (and thus doesn’t commit and doesn’t modify 
the file). 



Now another transaction starts up and modifies the file. 



Transaction 3 commits and thus sets the last-read timestamp of the file. 



Transaction 2 tries to continue but discovers that the file’s last-read timestamp is more 
recent than the transaction, and it thus must abort. If transaction 2 were allowed to 
commit, then its effect should have happened before transaction 3. However, transaction 3 
has read data that was subsequently modified by transaction 2. 



Finally, transaction 4 completes. Since its timestamp is more recent than the file’s last-
read and last-write timestamps, it’s allowed to commit. 


