




•  Time-sharing systems of the ’60s and ’70s.  
•  These machines had no real networking, security concerns constrained to individual 

computers.  
•  One identified oneself to the system by responding to the login prompt, and then proved one’s 

identity by supplying a password.  
•  Assuming the OS was secure this was a reasonably secure means for controlling access to the 

system.  
•  An attacker may make multiple password attempts but this would alert a sysadmin 



In the ’80s networks of computers started to become numerous. Pioneering work at UC Berkeley 
and elsewhere led to Berkeley Unix, its support of networked Unix machines, and the initial 
growth of the Internet. 



•  Also in the ’80s was the commercialization of the computer workstation.  

•  Collections of computers were being made to appear as if they were one large time-sharing 
system.  

•  Security now started to become an issue — how could time-sharing security be provided across 
a network?  

•  One approach took advantage of the fact that not just anyone could connect to the network — 
the software and hardware required was proprietary.  

•  Problems here relate to reverse engineering and leaks 



The “trusted hosts” approach to authentication was pioneered in early versions of Berkeley Unix. 
A server would have a list of clients it trusted, meaning that if it received a request from a user on 
such a trusted client, it would assume the user had been properly authenticated on that client 
and wouldn’t require any further validation of the user. 



Each host would maintain a .rhosts file containing the list of trusted hosts. (Not shown here, but 
the .rhosts file could also specify that only certain users on a remote host would be trusted.) 



1986 @ Stanford: Someone gained access to A, then found a way to get superuser access on that 
machine (via a separate issue), they then changed their UID to a user that had access to B and 
hopped onto B … then hopped around finally to E. 

 
The slide illustrates a problem that actually did occur in September 1986. Someone was able to 

login to computer at Stanford that had a “guest” account with password “guest”. Once logged in, 
they gained superuser access by taking advantage of a common configuration bug in which a 
directory containing scripts used by the “at” daemon (which runs commands set up to be run at a 
later time (see “man at”)) was writable by everyone. Furthermore, the path used by superuser for 
finding commands contained the current directory (“.”). Taking advantage of superuser privilege, 
the attacker changed his/her UID to a user who was allowed to rlogin to machine B. Once on 
machine B, the attacker was able to rlogin to machine C, etc. Fortunately it appeared that the 
attacker’s goal was to see how many computer’s she/he could break into, and apparently no harm 
was done. 



Another major problem with the trusted hosts approach is that it’s based on the assumption 
that the host a client request comes from can be reliably determined by the server.  

 
This is definitely not the case, since the host name is determined strictly by the IP address, 

which is supplied by the caller in the IP header. Among the ways for this to be forged are IP 
spoofing (as described in the next two slides) as well as ARP spoofing and MAC cloning. The latter 
two approaches work only if one is on the same subnet as the machine whose IP address is being 
forged. ARP spoofing entails convincing the server’s ARP (address resolution protocol, which maps 
IP addresses to MAC addresses) that the attacker’s MAC address should be associated with the IP 
address of the trusted host. MAC cloning involves changing the MAC address on the attacker’s 
machine so that it’s the same as that of the trusted host. Both approaches work best if the trusted 
host is down. 



IP spoofing is an attack in which one sends packets with a forged source IP address. Here’s 
an example of an application with TCP. Alice and Bob have computers (named after 
themselves) that often communicate with each other using the trusted hosts approach. 
Mallory wishes to attack Bob by sending his computer packets that appear to come from 
Alice’s computer. However, to make certain that Alice doesn’t get involved, Mallory starts 
bombarding Alice’s computer with a constant stream of packets that keep Alice’s computer so 
occupied that it can’t deal with anything else. 

While the attack on Alice is underway, Mallory sends a SYN packet to Bob, but with its 
source IP address set to Alice’s computer’s address. Bob responds by sending an ACK along 
with his own SYN and initial sequence number to Alice. However, Alice ignores it—her 
machine is too busy coping with Mallory’s attack. 

Mallory does not, of course, receive Bob’s response to his SYN and thus does not receive 
Bob’s initial sequence number. However, Mallory somehow guesses Bob’s initial sequence 
number and sends Bob an ACK (with Alice’s IP address as the source). Thus Bob feels that 
Alice has made a TCP connection to his computer, though Alice has no knowledge of it. 
Mallory, on the other hand, can use the connection, since she knows what the next sequence 
number expected by Bob is. 

Keep in mind that Mallory is not getting any form of response from Bob; she can only hope 
that her guess is correct. However, Mallory may know enough about Bob’s TCP 
implementation and the current state of its initial sequence number generator so that 
guessing an initial sequence number in a small number of tries is not unlikely. For example, 
Mallory may have made a few legitimate connections to Bob so that she knows how quickly 
Bob’s initial sequence number advances. 



Mallory takes advantage of the connection that Bob thinks is with Alice: she sends Bob an 
“rlogin” request, asking to log in to Bob as Alice. Bob’s computer, thinking that this request is 
coming directly from Alice’s computer, accepts the request without asking for proof of who 
the caller is. Mallory may now send to Bob any command she wishes, and have it executed 
using Alice’s user ID. 
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How do we handle authentication? The approach is that we provide, along with the message, two 
pieces of information. The first is our credentials, which asserts our identity. The second is some 
sort of verifier that proves that the credentials really are ours. For example, our credentials might 
be a name on a badge, while the verifier is our picture (which is also on the badge). 



A slightly more computer-related analogy is shown here. Our credentials are a string of text. The 
verifier is something that proves this, but is locked up in a box, for which only the two 
communicating parties have a key. To turn this into something that really is computer-related, 
think of locking the box as encrypting its contents, using an encryption key known only by the 
communicators. 



A potential problem occurs if there’s an eavesdropper who can make copies of messages, along 
with the credentials and verifiers. Even though the eavesdropper cannot decrypt the verifier, it 
could send it to the server along with its own message and make the server believe that the new 
message came from the original, properly authenticated client. 



This eavesdropping problem is easily dealt with by including something within the message that 
the receiver can use to detect that the item has been retransmitted. A possible choice here is the 
time of day. The receiver holds on to recently received messages; it rejects those whose time 
stamps are too old and those it has seen recently. Of course, for this to work, the clocks of the 
sender and receiver must be reasonably in sync. 
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Another issue is data integrity (i.e., assurance that a message hasn’t been tampered with). This 
can be provided through the use of a one-way hash function, such as SHA-1: one simply supplies 
the hash of message along with the message. To make certain that an attacker can’t simply modify 
the hash as well, what is supplied is not simply the hash of the message, but either the encrypted 
hash of the message (using the secret key) or the hash of the concatenation of the message and 
the key. 

When the hash is based on both the message contents and a secret key, it’s known as a 
Message Authentication Code (MAC) and sometimes as a Message Integrity Code (MIC). 



The ultimate step is confidentiality. Providing this is straightforward—everything is encrypted. 
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We’ll talk about symmetric key distribution next class 



There are a number of tough issues that must be dealt with before public-key technology can be 
really useful. 



(Obs: we deal with symmetric key approaches, exemplified by Kerberos, in the next lecture) 
 
Rather than use the secret-key approach in conjunction with a key-distribution server, one 

might use the public-key approach, involving two different keys: one for encrypting and one for 
decrypting. (In some schemes, either key can be used for either purpose: the keys are effective 
inverses of each other. In other schemes, one key is used only for encryption; the other used only 
for decryption.) One of the two keys is made available to everyone, the other is kept private. Of 
crucial importance is that an immense amount of time is required to compute the value of the 
private key from that of the public key. 

Using this scheme, I might encrypt my message (or verifier) with my private key. Since everyone 
has a copy of my public key, everyone can decrypt it. However, since encrypting the message 
required my private key, which is known only to me, the recipients are assured that the message 
must have come from me. 



How do Alice and Bob learn each other’s public keys in the first place? A simple approach is for 
the two of them to simply exchange their public keys. 



However, Mallory has somehow gotten between them (perhaps by taking over a router) and has 
launched a “man-in-the-middle” attack. He intercepts the public keys as they are being exchanged 
and substitutes his own public key for each. Thus what Alice thinks is Bob’s public key is actually 
Mallory’s, and what Bob thinks is Alice’s public key is also actually Mallory’s. Alice sends a nice 
message to Bob, encrypted in her private key. It’s intercepted by Mallory, who decrypts it using 
Alice’s public key. He can either reencrypt it in his private key, or send something else to Bob 
(encrypted in Mallory’s private key). Bob, on receipt of the message, decrypts it using what he 
thinks is Alice’s public key, but which is really Mallory’s. He’s convinced that he’s received a 
message from Alice, but, of course, it’s really from Mallory. Something similar happens to the 
message Bob sends to Alice. 

Note that this form of attack works even if the public keys are stored in a secure, public 
database. Mallory, being incredibly resourceful, could always intercept traffic to and from the 
database. 



We need an effective technique for thwarting Mallory. One possibility is the digital signature, 
which is accomplished using a technique similar to how tamper protection is achieved. To sign a 
message, one first computes a cryptographic checksum (e.g., using MD5), then encrypts the 
checksum using the signer’s private key, thus producing the signature. To verify the signature 
and to test the integrity of the message, one obtains the signer’s public key, decrypts the 
checksum, and checks to make certain that it is indeed the checksum of the message. One 
property of digital signatures is that if you sign a message, you cannot later deny the fact that you 
signed it (for example, by claiming that the signature is a forgery). We’ll see soon how this can be 
used against Mallory, but such signatures are also being touted as a legal replacement for 
handwritten signatures. 



One problem with public keys is reliably determining what someone’s public key is. As we’ve 
seen, you can’t simply ask someone for their public key — your question might be answered by 
Mallory. Even if we ask a trusted third party for someone’s public key, Mallory might still 
intervene. However, suppose we have a trusted third party that delivers signed messages, known 
as certificates, containing people’s public keys. Since Mallory doesn’t know the public key of the 
trusted third party, she can’t create or alter such certificates. Thus Alice and Bob can ask the 
third party (known as the certificate authority) for certificates containing each other’s public key, 
and be able to rely on their contents. 

Of course, we’re in some sense begging the question. How do Alice and Bob reliably obtain the 
public key of the certifying authority? For this we’ll have to assume some sort of trusted channel. 
For example, the public key comes with your operating system or your browser. (This, of course, is 
still begging the question. At some point there has to be something that we’re willing to trust.) 

Note that the certificate contains both a validity period and the domain name of the certified 
party. The latter is a crucial part of the defense against man-in-the-middle attacks. If Mallory (our 
woman in the middle) tries to use her own certificate rather than Alice’s, it would say, perhaps, 
“mallory.com” rather than “alice.com”: one can determine whom a certificate is for. 

Another concern is the ability to revoke certificates. For example, Alice is concerned that 
someone might have stolen her private key. She can inform the certificate authority that she’s 
revoking her old certificate. The authority makes a list of such revoked certificates and asks that 
people validating certificates first check the list to see if they’ve been revoked. The validity period 
puts a limit on how long the revoked certificate must appear in the list. 



Public-key schemes are generally too expensive for general use, despite their other fine 
properties. What’s done in practice is to use public-key schemes to distribute the keys for secret-
key schemes. 



An example of such a hybrid scheme is SSL. Though originally developed by Netscape, it has 
become the standard means for security on the web. Sun Microsystems used to have an excellent 
tutorial on SSL on their web site, but unfortunately both the company and the web site no longer 
exist. 







Exactly whom you should trust and why isn’t always exactly clear. (TC TrustCenter is a 
certificate authority whose certificate (and public key) is included with Internet Explorer and 
Firefox.) 



Heartbleed was reported April 7th 2014 but was vulnerable and undetected for a long time 
(2+ years?). 



This attack was publicized in August 2002 and fixed the following month. The problem was 
that certificates are supposed to indicate whether they are those of a certificate authority 
(CA). Only those certificates marked as such can be used to verify another certificate. For 
non-CA certificates, Verisign omitted the field. IE, if the field was omitted, assumed the 
certificate was that of a CA. 

See http://www.thoughtcrime.org/ie-ssl-chain.txt for details. 



This bug, described in http://www.sans.org/reading_room/whitepapers/threats/
ssl_maninthemiddle_attacks_480/, announced in December 2001, and fixed shortly 
thereafter, facilitated man-in-the-middle attacks. 





  



Here Mallory is using a DNS-cache-poisoning attack to put an entry in dns.good.com’s 
cache to direct lookups of server.money.com to Mallory’s machine. Since DNS is layered on 
top of UDP, the only thing that relates responses to queries is a Query ID number. Mallory 
first makes a number of queries to dns.good.com to determine what these are. She then 
sends a recursive query to dns.good.com, asking for the address of server.money.com. 
Dns.good.com recursively sends the result to dns.money.com. However, Mallory, spoofing the 
source address, sends her own response back to dns.good.com, stating that 
server.money.com is at w.x.y.z, which is the IP address of Mallory’s machine. Dns.good.com 
puts this into its cache (for the stated TTL). So, when Alice looks up server.money.com, to 
which she’ll be sending her account number, etc., she gets the address of Mallory’s machine 
in response. 

This problem goes away, of course, if one uses SSL (why? Hint: we assume that no 
certificate authority will give Mallory a certificate for server.money.com). Netscape had a 
problem with its implementation of SSL in releases up through 4.72 in which it assumed 
that all new connections to an already-authenticated IP address required no further 
authentication. Thus if Alice had an SSL connection with Mallory at w.x.y.z, then tried to 
contact server.money.com (with the cache poisoned as described above), her browser 
wouldn’t try to authenticate this new connection but would assume that the connection to 
w.x.y.z was properly authenticated for server.money.com. 



With DNSSEC, each zone has a public/private-key pair, used for signing and validating all 
information maintained by the zone. Thus, with a validated copy of the public key, one can 
validate all information obtained from the zone. The public key is provided in the record 
DNSKEY. Zones have a DS (delegation signer) record for each child zone, containing the hash 
of the child’s DNSKEY. Thus the parent zone validate’s the child’s public key. 

Resolvers (i.e., clients) must have either a DNSKEY or a DS to get started. All validation is 
relative to such “trust anchors”. See http://www.ietf.org/rfc/rfc4033.txt for details. 

To verify that something doesn’t exist, NSEC records represent the order of records in a 
zone and thus represent holes. 


