CS 138: Security

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley
CS 138 Vil-1

All rights reserved.

Check out other courses!

* CS166 — Introduction to Computer Systems
Security

* CS151 — Introduction to Cryptography and
Computer Security

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 Vii-2 All rights reserved.

Time-Sharing Systems

CS 138

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

VII-3

All rights reserved.

Time-sharing systems of the ’60s and *70s.
These machines had no real networking, security concerns constrained to individual

computers.

One identified oneself to the system by responding to the login prompt, and then proved one’s
identity by supplying a password.
Assuming the OS was secure this was a reasonably secure means for controlling access to the

system.

An attacker may make multiple password attempts but this would alert a sysadmin

Networks

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley
All rights reserved.

Cs 138 Vil-4

In the ’80s networks of computers started to become numerous. Pioneering work at UC Berkeley
and elsewhere led to Berkeley Unix, its support of networked Unix machines, and the initial
growth of the Internet.

Security by Obscurity

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley
CS 138 VII-5

All rights reserved.

Also in the '80s was the commercialization of the computer workstation.

Collections of computers were being made to appear as if they were one large time-sharing
system.

Security now started to become an issue — how could time-sharing security be provided across
a network?

One approach took advantage of the fact that not just anyone could connect to the network —
the software and hardware required was proprietary.

Problems here relate to reverse engineering and leaks

Trusted Hosts

I’'m Gargon, your server. |
trust your computer. |

I'm Sue. therefore believe you are
My password) Sue.
is xyzzy. I’'m your computer. |

authenticate you as

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley
All rights reserved.

CS 138 VII-6

The “trusted hosts” approach to authentication was pioneered in early versions of Berkeley Unix.
A server would have a list of clients it trusted, meaning that if it received a request from a user on
such a trusted client, it would assume the user had been properly authenticated on that client
and wouldn’t require any further validation of the user.

Rlogin

HD []
%D u
cslaboa W

.rhosts:
cslabOa
cslabOb
cslabOc

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-7

All rights reserved.

Each host would maintain a .rhosts file containing the list of trusted hosts. (Not shown here, but
the .rhosts file could also specify that only certain users on a remote host would be trusted.)

Rlogin Problem 1

Really Important .rhosts:
Forgotten, obscure computer E D
) computer A Not unimportant .rhosts:
(with account guest, ter C
password guest) computer

Not terribly important | .rhosts: Important computer D | .rhosts:
computer B
A c
cs 138 Vil-8 Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

All rights reserved.

1986 @ Stanford: Someone gained access to A, then found a way to get superuser access on that
machine (via a separate issue), they then changed their UID to a user that had access to B and
hopped onto B ... then hopped around finally to E.

The slide illustrates a problem that actually did occur in September 1986. Someone was able to
login to computer at Stanford that had a “guest” account with password “guest”. Once logged in,
they gained superuser access by taking advantage of a common configuration bug in which a
directory containing scripts used by the “at” daemon (which runs commands set up to be run at a
later time (see “man at”)) was writable by everyone. Furthermore, the path used by superuser for
finding commands contained the current directory (“.”). Taking advantage of superuser privilege,
the attacker changed his/her UID to a user who was allowed to rlogin to machine B. Once on
machine B, the attacker was able to rlogin to machine C, etc. Fortunately it appeared that the

attacker’s goal was to see how many computer’s she/he could break into, and apparently no harm
was done.

Rlogin Problem 2

» .rhosts file contains
cslab4d.cs.brown.edu

* How do we know a request comes from that
machine?

—its IP address is 128.148.38.231
* Can it be forged?

—yes!
- IP spoofing (next two slides)
- ARP spoofing
- MAC cloning
cs 138 VII-9 Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

All rights reserved.

Another major problem with the trusted hosts approach is that it’s based on the assumption

that the host a client request comes from can be reliably determined by the server.

This is definitely not the case, since the host name is determined strictly by the IP address,
which is supplied by the caller in the IP header. Among the ways for this to be forged are IP
spoofing (as described in the next two slides) as well as ARP spoofing and MAC cloning. The latter
two approaches work only if one is on the same subnet as the machine whose IP address is being
forged. ARP spoofing entails convincing the server’s ARP (address resolution protocol, which maps
IP addresses to MAC addresses) that the attacker’s MAC address should be associated with the IP
address of the trusted host. MAC cloning involves changing the MAC address on the attacker’s
machine so that it’s the same as that of the trusted host. Both approaches work best if the trusted

host is down.

IP Spoofing (1)

Alice

seq=300 ack=101 ctl=syn,ack

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-10

All rights reserved.

IP spoofing is an attack in which one sends packets with a forged source IP address. Here’s
an example of an application with TCP. Alice and Bob have computers (named after
themselves) that often communicate with each other using the trusted hosts approach.
Mallory wishes to attack Bob by sending his computer packets that appear to come from
Alice’s computer. However, to make certain that Alice doesn’t get involved, Mallory starts
bombarding Alice’s computer with a constant stream of packets that keep Alice’s computer so
occupied that it can’t deal with anything else.

While the attack on Alice is underway, Mallory sends a SYN packet to Bob, but with its
source IP address set to Alice’s computer’s address. Bob responds by sending an ACK along
with his own SYN and initial sequence number to Alice. However, Alice ignores it—her
machine is too busy coping with Mallory’s attack.

Mallory does not, of course, receive Bob’s response to his SYN and thus does not receive
Bob’s initial sequence number. However, Mallory somehow guesses Bob’s initial sequence
number and sends Bob an ACK (with Alice’s IP address as the source). Thus Bob feels that
Alice has made a TCP connection to his computer, though Alice has no knowledge of it.
Mallory, on the other hand, can use the connection, since she knows what the next sequence
number expected by Bob is.

Keep in mind that Mallory is not getting any form of response from Bob; she can only hope
that her guess is correct. However, Mallory may know enough about Bob’s TCP
implementation and the current state of its initial sequence number generator so that
guessing an initial sequence number in a small number of tries is not unlikely. For example,
Mallory may have made a few legitimate connections to Bob so that she knows how quickly
Bob’s initial sequence number advances.

IP Spoofing (2)

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley
CS 138 ViI-11

All rights reserved.

Mallory takes advantage of the connection that Bob thinks is with Alice: she sends Bob an
“rlogin” request, asking to log in to Bob as Alice. Bob’s computer, thinking that this request is
coming directly from Alice’s computer, accepts the request without asking for proof of who

the caller is. Mallory may now send to Bob any command she wishes, and have it executed
using Alice’s user ID.

Basic Security Requirements

Authentication: Who is this actor?
— Spoofing, phishing
Authorization: is actor allowed to do this action?
— Access controls
Confidentiality: Can adversary read the data?
— Sniffing, man-in-the-middle
Integrity: Do messages arrive in original form?
Availability: Will the network deliver data?
— Infrastructure compromise, DDoS

Replay Protection: Can adversary replay
messages?

CS 138

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

VII-12

All rights reserved.

Other Desirable Security
Properties

* Audit/Forensics: what occurred in the past?
— A broader notion of accountability/attribution

* Appropriate use: is action consistent with

policy?
— E.g., no spam; no games during business hours;
etc.
* Anonymity: can someone tell | sent this
message?
cs 138 VI-13 Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

All rights reserved.

13

Basic Forms of Cryptography

CS 138

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

Vil-14

All rights reserved.

14

Confidentiality through Cryptography

. Crypto?_raphy: communication over insecure
channel in the presence of adversaries

+ Studied for thousands of years

» Central goal: how to encode information so that
an adversary can’t extract it ...but a friend can

* General premise: a key is required for
decoding
— Give it to friends, keep it away from attackers
* Two different categories of encryption
— Symmetric: efficient, requires key distribution

— Asymmetric (Public Key): computationally
expensive, but no key distribution problem

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-15 All rights reserved.

15

Symmetric Key Encryption

« Same key for encryption and decryption
— Both sender and receiver know key
— But adversary does not know key
* For communication, problem is
— How do the parties (secretly) agree on the keY
+ What can you do with a huge key? One-time pad
— Huge key of random bits
* To encrypt/decrypt: just XOR with the key!
— Provably secure! provided:

- You never reuse the key ... and it really is
random/unpredictable

— Spies actually use these

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-16

All rights reserved.

16

Using Symmetric Keys

 Both the sender and the receiver use the same

secret keys

Plaintext

Plaintext

Encrypt with Internet Decrypt with
secret key secret key
Ciphertext
cs 138 Vi-17 Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

All rights reserved.

17

Asymmetric Encryption (Public Key)

* Idea: use two different keys, one to encrypt (e) and
one to decrypt (d)

— A key pair
* Crucial property: knowing e does not give away d
» Therefore e can be public: everyone knows it!

 If Alice wants to send to Bob, she fetches Bob’s
public key (say from Bob’s home page) and
encrypts with it

— Alice can’t decrypt what she’s sending to Bob ...
— ... but then, neither can anyone else (except Bob)

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-18

All rights rese

rved.

18

Public Key / Asymmetric
Encryption
+ Sender uses receiver’s key

— Advertised to everyone

* Receiver uses complementary key
— Must be kept secret

Plaintext Plaintext

Internet
Decrypt with
key
Ciphertext
cs 138 VI-19 Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

All rights reserved.

19

Works in Reverse Direction

Too!
» Sender uses his own key
* Receiver uses complementary key

* Allows sender to prove he knows private key

Plaintext Plaintext

Internet
Decrypt with
key
Ciphertext
cs 138 VII-20 Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

All rights reserved.

20

Realizing Public Key
Cryptography

* Invented in the 1970s
— Revolutionized cryptography
— (Was actually invented earlier by British intelligence)

* How can we construct an encryption/decryption
algorithm with public/private properties?

— Answer: Number Theory
* Most adopted approach: RSA
— Rivest / Shamir / Adleman, 1977; RFC 3447
— Based on modular multiplication of very large integers
— Very widely used (e.g., SSL/TLS for https)
» Other schemes exist, e.g., elliptic curve cryptography

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 Vil-21

All rights reserved.

21

Cryptographic Toolkit

CS 138

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

Vil-22

All rights reserved.

22

Cryptographic Toolkit

Confidentiality: Encryption
* Integrity: ?
Authentication: ?

* Provenance: ?

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-23 All rights reserved.

Integrity: Cryptographic Hashes

Sender computes a digest of message m, i.e., Him)
— H() is a publicly known hash function

Send m in any manner

Send digest d = H(m) to receiver in a secure way:
— Using another physical channel
— Using encryption (why does this help?)

Upon receiving m and d, receiver re-computes H(m) to
see whether result agrees with d

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 Vil-24

All rights reserved.

24

Operation of Hashing for Integrity

Plaintext Plaintext

Internet

digest

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-25

All rights reserved.

25

Cryptographically Strong Hashes

» Hard to find collisions

— Adversary can’t find two inputs that produce
same has

— Someone cannot alter message without
modifying digest

— Can succinctly refer to large objects

* Hard to invert

— Given hash, adversary can’t find input that
produces it

— Can refer obliquely to private objects (e.g.,
passwords)

- Send hash of object rather than object itself

CS 138

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

Vil-26

All rights reserved.

Properties

26

Effects of Cryptographic Hashing

Input Hash sum

Hash DFCD3454 BBEA788A

Fox —P» e 751A696C 24D97009
CA992D17

The red fox Hash 52ED879E 70F71D92

runs across —p function 6EB69570 08E03CE4
the ice CA6945D3

The red fox Hash 46042841 935C7FB0O

walks across —P A 9158585A B94AE214
the ice 26EB3CEA

cs 138 Vil—27 Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

All rights reserved.

27

Cryptographic Toolkit

Confidentiality: Encryption
Integrity: Cryptographic Hash
Authentication: ?

* Provenance: ?

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-28

All rights reserved.

Authentication

Client — message | verifier | credentials = Server

Message: hello
Credentials: name on an ID badge
Verifier: our picture on the badge

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-29

All rights reserved.

How do we handle authentication? The approach is that we provide, along with the message, two
pieces of information. The first is our credentials, which asserts our identity. The second is some
sort of verifier that proves that the credentials really are ours. For example, our credentials might
be a name on a badge, while the verifier is our picture (which is also on the badge).

Verifying the Credentials

| am Rodrigo credentials
client Yes you are | verifier server
L)

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley
CS 138 VII-30 i
All rights reserved.

A slightly more computer-related analogy is shown here. Our credentials are a string of text. The
verifier is something that proves this, but is locked up in a box, for which only the two
communicating parties have a key. To turn this into something that really is computer-related,

think of locking the box as encrypting its contents, using an encryption key known only by the
communicators.

Replays

‘\ | am Jeff credentials

client

Yes you are |verifier

v Q

| am Jeff credentiald Server

eavesdropper verifier

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley
CS 138 VII-31

All rights reserved.

A potential problem occurs if there’s an eavesdropper who can make copies of messages, along
with the credentials and verifiers. Even though the eavesdropper cannot decrypt the verifier, it
could send it to the server along with its own message and make the server believe that the new
message came from the original, properly authenticated client.

Preventing Replays
| am Jeff credentials
i verifier
client Yes you are: server
The time is
16:43:01.023
¢
A
CS 138 VIl-32 Copyright © 2015 Thomas W. DD:T:::::‘.SIT:;::L?

This eavesdropping problem is easily dealt with by including something within the message that
the receiver can use to detect that the item has been retransmitted. A possible choice here is the
time of day. The receiver holds on to recently received messages; it rejects those whose time
stamps are too old and those it has seen recently. Of course, for this to work, the clocks of the
sender and receiver must be reasonably in sync.

Public Key Authentication

+ Each side need only to know
the other side’s public key

— No secret key need be shared A B
* A encrypts a nonce (random &t Public,)
number) x using B’s public key
* B proves it can recover x %

« A can authenticate itself to B in
the same way

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-33 All rights reserved.

33

Data Integrity

Message

client

| am Tom

credentialg

Yes you are;
The time is
16:43:01.023;
Hash

N

&

verifier

Q

server

CS 138

VII-34

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

All rights reserved.

Another issue is data integrity (i.e., assurance that a message hasn’t been tampered with). This
can be provided through the use of a one-way hash function, such as SHA-1: one simply supplies
the hash of message along with the message. To make certain that an attacker can’t simply modify
the hash as well, what is supplied is not simply the hash of the message, but either the encrypted
hash of the message (using the secret key) or the hash of the concatenation of the message and

the key.

When the hash is based on both the message contents and a secret key, it’s known as a
Message Authentication Code (MAC) and sometimes as a Message Integrity Code (MIC).

Confidentiality

Message

7

| am Tom credentialy

a Q

client Yes you are; verifier server
The time is

16:43:01.023;
checksum

A

CS 138 VII-35

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley
All rights reserved.

The ultimate step is confidentiality. Providing this is straightforward—everything is encrypted.

Cryptographic Toolkit

Confidentiality: Encryption

Integrity: Cryptographic Hash
Authentication: Encrypted nonce, Verifier
* Provenance: ?

CS 138 V" 36 Copyright © 2015 Thomas W. Doeppner, Jeff Rasley
) All rights reserved.

Digital Signatures

« Suppose Alice has published public key
KE
* If she wishes to prove who she is, she
can send a message x encrypted with
her private key K,
—Therefore: anyone w/ public key K¢ can

recover x, verify that Alice must have sent
the message

—It provides a digital signature

—Alice can’t deny later deny it = non-
repudiation

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-37

All rights reserve

d.

37

RSA Crypto & Signatures, con’t

CS 138

Alice
pay $500 (Encrypt)
Alice's
* private key
DFCD3454
BBEA788A
Bob +
1 will Verify o ° -
pay $500 (Decrypt) Alice's

VIiI—30

public key

1. Doeppner, Jeff Rasley
All rights reserved.

38

Cryptographic Toolkit

Confidentiality: Encryption

Integrity: Cryptographic Hash
Authentication: Encrypted nonce, Verifier
* Provenance: Signatures

CS 138 V" 39 Copyright © 2015 Thomas W. Doeppner, Jeff Rasley
) All rights reserved.

Summary of Our Crypto Toolkit

* If we can securely distribute a key, then

—Symmetric ciphers (e.g., AES) offer fast,
presumably strong confidentiality

* Public key cryptography does away with
problem of secure key distribution
—But not as computationally efficient

—Often addressed by using public key crypto
to exchange a session key

—And not guaranteed secure
- but major result if not

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-40

All rights reserved.

40

Summary of Our Crypto Toolkit, con’t

» Cryptographically strong hash functions provide
major building block for integrity (e.g., SHA-256)

— As well as providing concise digests

— And providing a way to prove you know something
(e.g., passwords) without revealing it (non-invertibility)

— But: worrisome recent results regarding their strength
* Public key also gives us signatures
— Including sender non-repudiation

» Turns out there’s a crypto trick based on similar
algorithms that allows two parties who don’t know
each other’s public key to securely negotiate a secret
key even in the presence of eavesdroppers

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley
All rights reserved.

CS 138 Vii-41

We'll talk about symmetric key distribution next class

41

Issues

* Distribution of public keys
* Cryptographic attacks
» Cost of encryption and decryption

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 Vii-42

All rights reserved.

There are a number of tough issues that must be dealt with before public-key technology can be
really useful.

Public-Key Approaches
=2\
(=

Public F=OPA A
Keys o pgp OB

Messages Dear Alice, Dear Bob,

Private ri‘@ (5\

Keys !E . l

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-43

All rights reserved.

(Obs: we deal with symmetric key approaches, exemplified by Kerberos, in the next lecture)

Rather than use the secret-key approach in conjunction with a key-distribution server, one
might use the public-key approach, involving two different keys: one for encrypting and one for
decrypting. (In some schemes, either key can be used for either purpose: the keys are effective
inverses of each other. In other schemes, one key is used only for encryption; the other used only
for decryption.) One of the two keys is made available to everyone, the other is kept private. Of
crucial importance is that an immense amount of time is required to compute the value of the
private key from that of the public key.

Using this scheme, I might encrypt my message (or verifier) with my private key. Since everyone
has a copy of my public key, everyone can decrypt it. However, since encrypting the message
required my private key, which is known only to me, the recipients are assured that the message
must have come from me.

Public-Key Exchange
2\
(5‘

w=OrA TP A
fm’_ 7 -4 =B

Dear Alice, Dear Bob,
() @
s -fA
cs 138 Vil-44 Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

All rights reserved.

How do Alice and Bob learn each other’s public keys in the first place? A simple approach is for
the two of them to simply exchange their public keys.

Enter Mallory ...

)
(=2

H=OA F=OrA

You moron, Dear Bob, Dear Alice, You jerk,
A SR N A

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-45

All rights reserved.

However, Mallory has somehow gotten between them (perhaps by taking over a router) and has
launched a “man-in-the-middle” attack. He intercepts the public keys as they are being exchanged
and substitutes his own public key for each. Thus what Alice thinks is Bob’s public key is actually
Mallory’s, and what Bob thinks is Alice’s public key is also actually Mallory’s. Alice sends a nice
message to Bob, encrypted in her private key. It’s intercepted by Mallory, who decrypts it using
Alice’s public key. He can either reencrypt it in his private key, or send something else to Bob
(encrypted in Mallory’s private key). Bob, on receipt of the message, decrypts it using what he
thinks is Alice’s public key, but which is really Mallory’s. He’s convinced that he’s received a
message from Alice, but, of course, it’s really from Mallory. Something similar happens to the
message Bob sends to Alice.

Note that this form of attack works even if the public keys are stored in a secure, public
database. Mallory, being incredibly resourceful, could always intercept traffic to and from the
database.

Digital Signatures:
Non-Repudiation

If my seal has not been
broken, the information stored
herein has not been tampered
with and it is irrefutable that I
signed this message.

signed

e

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 Vii-46

All rights reserved.

We need an effective technique for thwarting Mallory. One possibility is the digital signature,
which is accomplished using a technique similar to how tamper protection is achieved. To sign a
message, one first computes a cryptographic checksum (e.g., using MDS5), then encrypts the
checksum using the signer’s private key, thus producing the signature. To verify the signature
and to test the integrity of the message, one obtains the signer’s public key, decrypts the
checksum, and checks to make certain that it is indeed the checksum of the message. One
property of digital signatures is that if you sign a message, you cannot later deny the fact that you
signed it (for example, by claiming that the signature is a forgery). We’ll see soon how this can be
used against Mallory, but such signatures are also being touted as a legal replacement for
handwritten signatures.

Public Keys and Certificates

To whom it may concern:

I certify that alice.com’s public key is:
0x83af208d63cf2901b963741a0479dba5ff
037ea9b3700714db32619cc58932¢7. This
information is valid from 1 Jan 2012
through 31 Dec 2012.

Signed)

AR

Authority

Certificate

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 Vil-47

All rights reserved.

One problem with public keys is reliably determining what someone’s public key is. As we’ve
seen, you can’t simply ask someone for their public key — your question might be answered by
Mallory. Even if we ask a trusted third party for someone’s public key, Mallory might still
intervene. However, suppose we have a trusted third party that delivers signed messages, known
as certificates, containing people’s public keys. Since Mallory doesn’t know the public key of the
trusted third party, she can’t create or alter such certificates. Thus Alice and Bob can ask the
third party (known as the certificate authority) for certificates containing each other’s public key,
and be able to rely on their contents.

Of course, we’re in some sense begging the question. How do Alice and Bob reliably obtain the
public key of the certifying authority? For this we’ll have to assume some sort of trusted channel.
For example, the public key comes with your operating system or your browser. (This, of course, is
still begging the question. At some point there has to be something that we’re willing to trust.)

Note that the certificate contains both a validity period and the domain name of the certified
party. The latter is a crucial part of the defense against man-in-the-middle attacks. If Mallory (our
woman in the middle) tries to use her own certificate rather than Alice’s, it would say, perhaps,
“mallory.com” rather than “alice.com”: one can determine whom a certificate is for.

Another concern is the ability to revoke certificates. For example, Alice is concerned that
someone might have stolen her private key. She can inform the certificate authority that she’s
revoking her old certificate. The authority makes a list of such revoked certificates and asks that
people validating certificates first check the list to see if they've been revoked. The validity period
puts a limit on how long the revoked certificate must appear in the list.

Hybrid Schemes

Public-key schemes are close to unbreakable
— With ~2048-bit keys

Key distribution simpler than with symmetric

(secret-key) schemes

* Generally >1000 times more expensive than
symmetric schemes

+ Compromise:

— use public-key scheme to distribute secret
keys (known as session keys)

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 Vii-48

All rights reserved.

Public-key schemes are generally too expensive for general use, despite their other fine
properties. What’s done in practice is to use public-key schemes to distribute the keys for secret-
key schemes.

SSL

» Secure Socket Layer
— now called Transport Layer Security (TLS)
- RFC 2246

— certificates used for authentication and private-key
exchange

- one-way authentication (server to client) in https
- a number of common secret-key schemes

* 40-bit RC4 (woefully weak)

* 56-bit DES (very weak)

+ 128-bit RC4

* 168-bit triple DES

- A number of crypto hashes for integrity (e.g.
SHA-256. SHA-1 deprecated, MD5 dead!)

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 Vii-49

All rights reserved.

An example of such a hybrid scheme is SSL. Though originally developed by Netscape, it has
become the standard means for security on the web. Sun Microsystems used to have an excellent
tutorial on SSL on their web site, but unfortunately both the company and the web site no longer
exist.

TLS: Typical Use

» Client connects to server
* Using TLS

— client authenticates server (via server’s
certificate)

— secure channel created
* Over secure channel

— server authenticates client using user name
and password

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-50

All rights reserved.

Client Certificates

* Good idea

— clients don’t give away private information
(such as passwords)

* Requires PKI (public-key infrastructure)
—who vouches for client identites?
* Doesn’t scale in practice

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley
CS 138 VII-51

All rights reserved.

Trusting the Authorities

* How do you know the CA’s public key?

— its certificate came with the browser
—it’s certified by a CA whose certificate came
with the browser
* “| trust this certificate because | trust TC
TrustCenter of Hamburg, Germany”
—huh?
* “l trust TC TrustCenter because most browser

companies made a deal with it to include its
certificate in their browsers”

— well, maybe ...

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-52

All rights reserved.

Exactly whom you should trust and why isn’t always exactly clear. (TC TrustCenter is a
certificate authority whose certificate (and public key) is included with Internet Explorer and
Firefox.)

Is SSL/TLS Secure?

* Probably ...
* But, watch out for the implementation!
— long history of exploitable bugs ...

heartbeat msgs in TLS allowed dumped
random memory (ouch!)

poor random-number generator in early
Netscape

improper checking of certificates in IE
* “is CA” field in IE 6
- certificates for image data in IE 6
etc.

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-53

All rights reserved.

Heartbleed was reported April 7th 2014 but was vulnerable and undetected for a long time
(2+ years?).

Certificate Chains

» | get a certificate from Verisign

—138.com
| create a certificate for site-secure.com and sign it
* | launch man-in-the-middle attack:

—you contact https://site-secure.com

— |l intercept and supply my site-secure.com
certificate, along with my CA certificate (138.com)

—you validate 138.com using Verisign’s certificate,
then site-secure.com using 138.com

— I learn your user ID and password for site-
secure.com

» See paper

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 Vil-54

All rights reserved.

This attack was publicized in August 2002 and fixed the following month. The problem was
that certificates are supposed to indicate whether they are those of a certificate authority
(CA). Only those certificates marked as such can be used to verify another certificate. For
non-CA certificates, Verisign omitted the field. IE, if the field was omitted, assumed the
certificate was that of a CA.

See http://www.thoughtcrime.org/ie-ssl-chain.txt for details.

Certificates for Image Data

* | have a web page that includes:

<img src="https:/ /site-secure.com/nogif.gif"
height=1 width=1>

* Access intercepted by “man in the middle
— supplies bogus certificate

IE checked only that the certificate was
signed by a trusted root

—didn’t bother checking that the name in the
certificate matched the URL, etc.

— cached the certificate

— the next time you access site-secure.com, the
cached certificate is used ...

» See paper

CS 138 VII-55

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

All rights reserved.

This bug, described in http://www.sans.org/reading_room/whitepapers/threats/
ssl_maninthemiddle_attacks_480/, announced in December 2001, and fixed shortly
thereafter, facilitated man-in-the-middle attacks.

Other PKis

* DNS-Sec

— Goal: sign DNS responses

— Prevent DNS cache poisoning

— Certificate delegation follows DNS hierarchy
- BGP

— Goal: sign AS advertisements (’'m AS 2334 and
| own prefix 190.221/16) or (’'m AS 445 and you
can reach AS 2334 through me)

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-56

All rights reserved.

DNS Cache Poisoning

» Idea: put bogus entry in DNS cache

» Trick clients into connecting to wrong
machine

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley
All rights reserved.

CS 138 VII-57

Details

?
_ 4 server.moneV.com—
\
awxyzl— Mallory

(w.x.y.z)

dns.money.com

Alice
- >~
server.money.com
cs 138 VI |—58 Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

All rights reserved.

Here Mallory is using a DNS-cache-poisoning attack to put an entry in dns.good.com’s
cache to direct lookups of server.money.com to Mallory’s machine. Since DNS is layered on
top of UDP, the only thing that relates responses to queries is a Query ID number. Mallory
first makes a number of queries to dns.good.com to determine what these are. She then
sends a recursive query to dns.good.com, asking for the address of server.money.com.
Dns.good.com recursively sends the result to dns.money.com. However, Mallory, spoofing the
source address, sends her own response back to dns.good.com, stating that
server.money.com is at w.x.y.z, which is the IP address of Mallory’s machine. Dns.good.com
puts this into its cache (for the stated TTL). So, when Alice looks up server.money.com, to
which she’ll be sending her account number, etc., she gets the address of Mallory’s machine
in response.

This problem goes away, of course, if one uses SSL (why? Hint: we assume that no
certificate authority will give Mallory a certificate for server.money.com). Netscape had a
problem with its implementation of SSL in releases up through 4.72 in which it assumed
that all new connections to an already-authenticated IP address required no further
authentication. Thus if Alice had an SSL connection with Mallory at w.x.y.z, then tried to
contact server.money.com (with the cache poisoned as described above), her browser
wouldn’t try to authenticate this new connection but would assume that the connection to
w.x.y.z was properly authenticated for server.money.com.

DNSSEC

+ DNSKEY
— public key for zone
* RRSet
— resource-record set
— signed with zone’s private key
- DS

— delegation signer * NSEC

_ contains crypto. hash of — validated, canonical ordering

child’s DNSKEY of resource records, used to
prove non-existence

Copyright © 2015 Thomas W. Doeppner, Jeff Rasley

CS 138 VII-59

All rights reserved.

With DNSSEC, each zone has a public/private-key pair, used for signing and validating all
information maintained by the zone. Thus, with a validated copy of the public key, one can
validate all information obtained from the zone. The public key is provided in the record
DNSKEY. Zones have a DS (delegation signer) record for each child zone, containing the hash
of the child’s DNSKEY. Thus the parent zone validate’s the child’s public key.

Resolvers (i.e., clients) must have either a DNSKEY or a DS to get started. All validation is
relative to such “trust anchors”. See http:/ /www.ietf.org/rfc/rfc4033.txt for details.

To verify that something doesn’t exist, NSEC records represent the order of records in a
zone and thus represent holes.

