
 CS 138 VI–1
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

CS 138: Communication II

 CS 138 VI–2
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Today’s Lecture

•  Sockets
•  RPC

– Overview
– Challenges
– Examples

 CS 138 VI–3
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Sockets

 CS 138 VI–4
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Sockets

•  TCP and UDP allow sending and receiving of
bytes over the network

– TCP: reliable infinite stream of bytes between
two processes

– UDP: unreliable messages (up to 64KB)
•  How do applications access these protocols?

 CS 138 VI–5
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Using TCP/IP

•  Sockets API.
– Originally from BSD, widely implemented (*BSD, Linux,

Mac OS X, Windows, …)
–  Important do know and do once
– Higher-level APIs build on them

•  After basic setup, much like files
– Sockets are file descriptors

 CS 138 VI–6
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Types of Sockets

•  Datagram sockets: unreliable message delivery
– With IP, gives you UDP
– Send atomic messages, which may be reordered or lost

•  Stream sockets: bi-directional pipes
– With IP, gives you TCP
– Bytes written on one end read on another

•  There are other types
– Eg. Unix domain sockets

-  Endpoints are filenames

 CS 138 VI–7
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Sockets
SECTION 4.2 THE API FOR THE INTERNET PROTOCOLS 149

4.2.2 Sockets
Both forms of communication (UDP and TCP) use the socket abstraction, which
provides an endpoint for communication between processes. Sockets originate from
BSD UNIX but are also present in most other versions of UNIX, including Linux as well
as Windows and the Macintosh OS. Interprocess communication consists of
transmitting a message between a socket in one process and a socket in another process,
as illustrated in

Figure 4.2 Sockets and ports

message

agreed portany port socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports
client server

Figure 4.2. For a process to receive messages, its socket must be bound
to a local port and one of the Internet addresses of the computer on which it runs.
Messages sent to a particular Internet address and port number can be received only by
a process whose socket is associated with that Internet address and port number.
Processes may use the same socket for sending and receiving messages. Each computer
has a large number (216) of possible port numbers for use by local processes for
receiving messages. Any process may make use of multiple ports to receive messages,
but a process cannot share ports with other processes on the same computer. (Processes
using IP multicast are an exception in that they do share ports – see Section 4.4.1.)
However, any number of processes may send messages to the same port. Each socket is
associated with a particular protocol – either UDP or TCP.

Java API for Internet addresses • As the IP packets underlying UDP and TCP are sent
to Internet addresses, Java provides a class, InetAddress, that represents Internet
addresses. Users of this class refer to computers by Domain Name System (DNS)
hostnames (see Section 3.4.7). For example, instances of InetAddress that contain
Internet addresses can be created by calling a static method of InetAddress, giving a
DNS hostname as the argument. The method uses the DNS to get the corresponding
Internet address. For example, to get an object representing the Internet address of the
host whose DNS name is bruno.dcs.qmul.ac.uk, use:

InetAddress aComputer = InetAddress.getByName("bruno.dcs.qmul.ac.uk");

This method can throw an UnknownHostException. Note that the user of the class does
not need to state the explicit value of an Internet address. In fact, the class encapsulates
the details of the representation of Internet addresses. Thus the interface for this class is
not dependent on the number of bytes needed to represent Internet addresses – 4 bytes
in IPv4 and 16 bytes in IPv6.

From Colouris, chapter 4

 CS 138 VI–8
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

System calls for using TCP

Client Server
 socket – create socket
 bind – assign address, port
 listen – listen for clients

socket – create socket
bind* – assign address (optional)
connect – connect to listening socket

 accept – accept connection

Both can read and write from the connection.
Both can call close to end the connection.

 CS 138 VI–9
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Go’s Interface is not too different

ln, err := net.Listen("tcp", ":8080")
if err != nil {
 // handle error
}
for {
 conn, err := ln.Accept()
 if err != nil {
 // handle error
 }
 go handleConnection(conn)
}

Server:

 CS 138 VI–10
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Go’s Interface is not too different

conn, err := net.Dial("tcp", "google.com:80")
if err != nil {
 // handle error
}
fmt.Fprintf(conn, "GET / HTTP/1.0\r\n\r\n")
status, err :=
bufio.NewReader(conn).ReadString('\n')
// ...

Client:

 CS 138 VI–11
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Limitations

•  Strictly an interface to the transport layer
–  (or lower)

•  Reliability
–  if the receiving machine is temporarily not

available, will sent data eventually reach it?
– how is the sender notified if sent data does not

arrive at destination machine?
– how is the sender notified if sent data does not

arrive at destination application?

 CS 138 VI–12
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Writing Distributed Programs

•  Concerns
–  transparency
– portability
–  interoperability

•  Solutions
– RPC
– RMI

 CS 138 VI–13
Content from David Andersen

Common communication
pattern

Client Server Hey, do something

working {

Done/Result

 CS 138 VI–14
Content from David Andersen

Writing it by hand...

•  eg, if you had to write a, say, password
cracker

struct foomsg {
 u_int32_t len;
}

send_foo(char *contents) {
 int msglen = sizeof(struct foomsg) + strlen(contents);
 char buf = malloc(msglen);
 struct foomsg *fm = (struct foomsg *)buf;
 fm->len = htonl(strlen(contents));
 memcpy(buf + sizeof(struct foomsg),
 contents,
 strlen(contents));
 write(outsock, buf, msglen);
}

Then wait for response, etc.

 CS 138 VI–15
Content from David Andersen

RPC

•  A type of client/server
communication

•  Attempts to make remote procedure
calls look like local ones

{ ...
 foo()
}
void foo() {
 invoke_remote_foo()
}

 CS 138 VI–16
Content from David Andersen

Go Example

•  Need some setup in advance of this but…

// Synchronous call
args := &server.Args{7,8}
var reply int
err = client.Call("Arith.Multiply", args,
&reply)
if err != nil {

 log.Fatal("arith error:", err)
}
fmt.Printf("Arith: %d*%d=%d", args.A, args.B,
reply)

16

 CS 138 VI–17
Content from David Andersen

RPC Goals

•  Ease of programming
•  Hide complexity
•  Automates task of implementing

distributed computation
•  Familiar model for programmers

(just make a function call)

Historical note: Seems obvious in retrospect, but RPC was only invented in the
‘80s. See Birrell & Nelson, “Implementing Remote Procedure Call” ... or
Bruce Nelson, Ph.D. Thesis, Carnegie Mellon University: Remote Procedure
Call., 1981 :)

 CS 138 VI–18
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Hiding Complexity

•  Makes a call to a remote service look
like a local call

– RPC makes transparent whether server is
local or remote

– RPC allows applications to become
distributed transparently

– RPC makes architecture of remote
machine transparent

18

 CS 138 VI–19
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

But it’s not always simple

•  Calling and called procedures run on
different machines, with different
address spaces

– And perhaps different environments .. or
operating systems ..

•  Must convert to local representation of
data

•  Machines and network can fail

 CS 138 VI–20
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Local Procedure Calls

// Client code
 . . .

result = procedure(arg1, arg2);
 . . .

// Server code
result_t procedure(a1_t arg1, a2_t arg2) {
 . . .

 return(result);
}

 CS 138 VI–21
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Remote Procedure Calls (1)

// Client code
 . . .

result = procedure(arg1, arg2);
 . . .

// Server code
result_t procedure(a1_t arg1, a2_t arg2) {
 . . .

 return(result);
}

?

 CS 138 VI–22
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Remote Procedure Calls (2)

// Client code
 . . .

result = procedure(arg1, arg2);
 . . .

// Server code
result_t procedure(a1_t arg1, a2_t arg2) {
 . . .

 return(result);
}

Client-Side Stub

Server-Side Stub

 CS 138 VI–23
Content from David Andersen

Stubs: obtaining transparency

•  Compiler generates from API stubs for a
procedure on the client and server

•  Client stub
– Marshals arguments into machine-independent

format
– Sends request to server
– Waits for response
– Unmarshals result and returns to caller

•  Server stub
– Unmarshals arguments and builds stack frame
– Calls procedure
– Server stub marshals results and sends reply

23

 CS 138 VI–24
Content from David Andersen

“stubs” and IDLs

•  RPC stubs do the work of marshaling and
unmarshaling data

•  But how do they know how to do it?
•  Two basic alternatives

– Write a description of the function signature
using an IDL -- interface description language.

-  Lots of these. Some look like C, some look
like XML, ... details don’t matter much.

– Use reflection information to do this
-  Go-rpc, Java RMI

 CS 138 VI–25
Content from David Andersen

Remote Procedure Calls (1)

•  A remote procedure call occurs in the
following steps:

1.  The client procedure calls the client stub in the
normal way.

2.  The client stub builds a message and calls the
local operating system.

3.  The client’s OS sends the message to the
remote OS.

4.  The remote OS gives the message to the server
stub.

5.  The server stub unpacks the parameters and
calls the server.

 Continued …

25

 CS 138 VI–26
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Remote Procedure Calls (2)

…
6. The server does the work and returns the result to

the stub.
7. The server stub packs it in a message and calls its

local OS.
8. The server’s OS sends the message to the client’s

OS.
9. The client’s OS gives the message to the client

stub.
10. The stub unpacks the result and returns to the

client.

26

 CS 138 VI–27
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Block Diagram

Client

Application

Stub

RPC support
code

Transport
protocol

Server

Remote
procedure

Stub

RPC support
code

Transport
protocol

 CS 138 VI–28
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Today’s Lecture

•  Sockets
•  RPC

– Overview
– Challenges
– Examples

 CS 138 VI–29
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Local vs. Distributed

•  Latency
•  Memory access
•  Partial failure
•  Concurrency

 CS 138 VI–30
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Latency

•  Remote invocation of objects takes much
longer than local invocation

– can this be ignored at first and dealt with later?

 CS 138 VI–31
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Synchronous RPC

31

•  The interaction between client and
server in a traditional RPC.

 CS 138 VI–32
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Asynchronous RPC (1)

32

•  The interaction using asynchronous RPC.

 CS 138 VI–33
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Asynchronous RPC (2)

33

•  A client and server interacting through
two asynchronous RPCs.

 CS 138 VI–34
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Concurrency

•  Distributed programs have the same
concurrency issues as multithreaded
programs

– Do they? In a single address space…
-  all threads are under control of a

common OS
-  synchronization is easy
-  fate sharing

 CS 138 VI–35
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

RPC failures

•  Request from cli à srv lost
•  Reply from srv à cli lost
•  Server crashes after receiving

request
•  Client crashes after sending

request

 CS 138 VI–36
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Partial failures

•  In local computing:
–  if machine fails, application fails

•  In distributed computing:
–  if a machine fails, part of application fails
– one cannot tell the difference between a

machine failure and network failure
– one cannot (in principle) tell the difference

between a failure and a really long execution!
•  How to make partial failures transparent to

client?

36

 CS 138 VI–37
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Strawman solution

•  Make remote behavior identical to local
behavior:

– Every partial failure results in complete failure
-  You abort and reboot the whole system

– You wait patiently until system is repaired
•  Problems with this solution:

– Many catastrophic failures
– Clients block for long periods

-  System might not be able to recover

37

 CS 138 VI–38
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Real solution: break
transparency

•  Possible semantics for RPC:
– Exactly-once

-  Impossible in practice
– At least once:

-  Only for idempotent operations
– At most once

-  Zero, don’t know, or once
– Zero or once

-  Transactional semantics

38

 CS 138 VI–39
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Real solution: break
transparency

•  At-least-once: Just keep retrying on client side until
you get a response.
–  Server just processes requests as normal,

doesn’t remember anything. Simple!
•  At-most-once: Server might get same request

twice...
–  Must re-send previous reply and not process

request (implies: keep cache of handled
requests/responses)

–  Must be able to identify requests
–  Strawman: remember all RPC IDs handled. ->

Ugh! Requires infinite memory.
–  Real: Keep sliding window of valid RPC IDs, have

client number them sequentially.

 CS 138 VI–40
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Uncertainty

Client Server
Request

Client Server

Client Server
Request

Client Server

Client Server
Request

Client Server
Response

 CS 138 VI–41
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Idempotent Procedures
Client Server

Write File A Block 0

Client Server
Done

Client Server
(Ahem …) Write File A Block 0

Client Server
Done

At-least-once semantics

 CS 138 VI–42
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Non-Idempotent Procedures

Client Server Transfer $1000 from Kyle’s
Account to Andy’s

Client Server
Done

Client Server Do it again and again and
again!

Client Server
Done

At-most-once semantics

 CS 138 VI–43
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Maintaining History

Client Server Transfer $1000 from Kyle’s
Account to Andy’s

Client Server
Done

Client Server Do it again!

Client Server
Done (replay)

At-most-once semantics

 CS 138 VI–44
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

No History

Client Server Transfer $1000 from Kyle’s
Account to Andy’s

Client Server
Done

Client Server Do it again!

Client Server
Sorry …

At-most-once semantics

CRASH!!

 CS 138 VI–45
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Coping

Fault tolerance measures Invocation
Semantics

Retransmit
request
message

Duplicate
filtering

Re-execute
procedure or
retransmit reply

No Not applicable Not applicable Maybe
Yes No Re-execute

procedure
At-least-once

Yes Yes Retransmit reply At-most-once

 CS 138 VI–46
Content from David Andersen

Exactly-Once?

•  Sorry - no can do in general.
•  Imagine that message triggers an

external physical thing (say, a
robot fires a nerf dart at the
professor)

•  The robot could crash immediately
before or after firing and lose its
state. Don’t know which one
happened. Can, however, make
this window very small.

 CS 138 VI–47
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Memory Access

•  Pointers work locally
•  Can they be made to work remotely?

– yes … (but it’s complicated)
– but don’t use a remote pointer thinking it’s

just like a local pointer

 CS 138 VI–48
Content from David Andersen

Implementation Concerns

•  As a general library, performance is often a
big concern for RPC systems

•  Major source of overhead: copies and
marshaling/unmarshaling overhead

•  Zero-copy tricks:
– Representation: Send on the wire in native

format and indicate that format with a bit/byte
beforehand. What does this do? Think about
sending uint32 between two little-endian
machines (DEC RPC)

– Scatter-gather writes (writev() and friends)

 CS 138 VI–49
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Summary:
expose remoteness to client

•  Expose RPC properties to client, since you
cannot hide them

•  Application writers have to decide how to
deal with partial failures

– Consider: E-commerce application vs. game

49

 CS 138 VI–50
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Important Lessons

•  Procedure calls
–  Simple way to pass control and data
–  Elegant transparent way to distribute application
– Not only way…

•  Hard to provide true transparency
–  Failures
–  Performance
– Memory access
–  Etc.

•  How to deal with hard problem à give up and let
programmer deal with it

–  “Worse is better”

50

 CS 138 VI–51
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Today’s Lecture

•  Sockets
•  RPC

– Overview
– Challenges
– Examples

 CS 138 VI–52
Content from David Andersen

Two styles of RPC
implementation

•  Shallow integration. Must use lots of library calls
to set things up:

– How to format data
– Registering which functions are available and how

they are invoked.

•  Deep integration.
– Data formatting done based on type declarations
–  (Almost) all public methods of object are registered.

•  Sun RPC, XMLRPC, GRPC, Thrift
•  Go and Java use the latter.

52

 CS 138 VI–53
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Example: Sun XDR (RFC 4506)

•  External Data Representation for SunRPC
•  Types: most of C types
•  No tags (except for array lengths)

– Code needs to know structure of message
•  Usage:

– Create a program description file (.x)
– Run rpcgen program
–  Include generated .h files, use stub functions

•  Very C/C++ oriented
– Although encoders/decoders exist for other

languages

 CS 138 VI–54
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Example
typedef struct {

int comp1;
double comp2;
long long comp3[6];
char *annotation;

} value_t;

typedef struct {

value_t element;
value_t *next;

} list_t;

char add(int key, value_t value);
char remove(int key, value_t value);
list_t query(int key);

 CS 138 VI–55
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

A Specification
typedef struct value {

int comp1;
double comp2;
hyper comp3[6];
string annotation<255>;

} value_t;

typedef struct list {

value_t element;
struct list *next;

} list_t;

program DB {

 version DBVERS {
 bool add(int key, value_t value) = 1;
 bool remove(int key, value_t value) = 2;
 list_t query(int key) = 3;
 } = 1;

} = 0x2000000A;

•  Rpcgen generates marshalling/unmarshalling
code, stub functions, you fill out the actual code

 CS 138 VI–56
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

XDR Primitive Types

•  Integer
•  Unsigned integer
•  Boolean
•  Hyper integer
•  Unsigned hyper integer
•  Fixed-length opaque data
•  Variable-length opaque data
•  String

 CS 138 VI–57
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

XDR Structured Types

•  Fixed-length array
•  Variable-length array
•  Discriminated union
•  Linked lists

 CS 138 VI–58
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Generated Header File
struct value {

 int comp1;

 double comp2;

 int64_t comp3[6];

 char *annotation;

};

typedef struct value value;

typedef value value_t;

struct list {

 value_t element;

 struct list *next;

};

typedef struct list list;

typedef list list_t;

struct add_1_argument {

 int key;

 value_t value;

};

typedef struct add_1_argument
 add_1_argument;

struct remove_1_argument {

 int key;

 value_t value;

};

typedef struct remove_1_argument
 remove_1_argument;

 CS 138 VI–59
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Placing Calls

 result_1 = add_1(add_1_key, add_1_value, clnt);
 if (result_1 == (bool_t *) NULL) {

 clnt_perror (clnt, "call failed");

 }

 result_2 = remove_1(remove_1_key, remove_1_value, clnt);

 if (result_2 == (bool_t *) NULL) {

 clnt_perror (clnt, "call failed");
 }

 result_3 = query_1(query_1_key, clnt);

 if (result_3 == (list_t *) NULL) {

 clnt_perror (clnt, "call failed");

 }

 clnt_destroy (clnt);

}

 CS 138 VI–60
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

DCE RPC

•  Designed by Apollo and Digital in the 1980s
– both companies later absorbed by HP

•  Does everything ONC RPC can do, and more
•  Basis for Microsoft RPC

 CS 138 VI–61
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Same Example …

typedef struct {
double comp1;
int comp2;
long long comp3;
char *annotation;

} value_t;

char add(int key, value_t value);
char remove(int key, value_t value);
int query(int key, int number, value_t values[]);

 CS 138 VI–62
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

An Interface Specification

interface db {
typedef struct {

double comp1;
long comp2;
hyper comp3;
[string, ptr]

ISO_LATIN_1
*annotation;

} value_t;

boolean add(

[in] long key,
[in] value_t value

);

boolean remove(
[in] long key,
[in] value_t value

);

long query(
[in] long key,
[in] long number,
[out, size_is(number)]

value_t values[]
);

}

 CS 138 VI–63
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

An Interface Specification
(notes continued)

interface db {
typedef struct {

double comp1;
long comp2;
hyper comp3;
[string, ptr]

ISO_LATIN_1
*annotation;

} value_t;

boolean add(

[in] long key,
[in] value_t value

);

boolean remove(
[in] long key,
[in] value_t value

);

long query(
[in] long key,
[in] long number,
[out, size_is(number)]

value_t values[]
);

}

 CS 138 VI–64
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Representing an Array

Length Item 1 Item 2 … Item n

 CS 138 VI–65
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Representing Pointers

P *P sender

*P marshalled

P *P receiver

on stack on callee’s
stack

 CS 138 VI–66
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Complications

 CS 138 VI–67
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Marshalling Unrestricted
Pointers

A:

B: C:

D: E:

2
4

0 (A):

-1
6

2 (B):

6
8

4 (C):

6 (D):

8 (E):

 CS 138 VI–68
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Referring to Server State

Client
Server

pointer

 CS 138 VI–69
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Maintaining Client State on
Servers

interface trees {
 typedef [context_handle] void *tree_t;

 void create (
 [in] long value,
 [out] tree_t pine
);

 void insert (
 [in] long value,
 [in, out] tree_t pine
);
}

 CS 138 VI–70
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Go RPC
package server

type Args struct {
 A, B int
}

type Quotient struct {
 Quo, Rem int
}
type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
 *reply = args.A * args.B

 return nil
}
func (t *Arith) Divide(args *Args, quo *Quotient) error {
 if args.B == 0 {

 return errors.New("divide by zero")
 }
 quo.Quo = args.A / args.B

 quo.Rem = args.A % args.B
 return nil
}

 CS 138 VI–71
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Server Startup

arith := new(Arith)
rpc.Register(arith)
rpc.HandleHTTP()
l, e := net.Listen("tcp", ":1234")
if e != nil {
 log.Fatal("listen error:", e)
}
go http.Serve(l, nil)

 CS 138 VI–72
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Client Startup

client, err := rpc.DialHTTP("tcp", serverAddress + ":1234")
if err != nil {
 log.Fatal("dialing:", err)
}

 CS 138 VI–73
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Client Call

// Synchronous call
args := &server.Args{7,8}
var reply int
err = client.Call("Arith.Multiply", args,
&reply)
if err != nil {

 log.Fatal("arith error:", err)
}
fmt.Printf("Arith: %d*%d=%d", args.A, args.B,
reply)

73

 CS 138 VI–74
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Client Call

// Asynchronous call
quotient := new(Quotient)
divCall := client.Go("Arith.Divide", args,
quotient, nil)
replyCall := <-divCall.Done // will be equal to
divCall
// check errors, print, etc.

74

 CS 138 VI–75
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

RMI: a Remote Interface

package compute;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Compute extends Remote {
 <T> T executeTask(Task<T> t) throws RemoteException;
}

 CS 138 VI–76
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

RMI: the Argument

package compute;

public interface Task<T> {
 T execute();

}

 CS 138 VI–77
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

RMI: the Server (1)

package engine;

import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import java.rmi.server.UnicastRemoteObject;
import compute.Compute;
import compute.Task;

public class ComputeEngine implements Compute {
 public ComputeEngine() { super(); }
 public <T> T executeTask(Task<T> t) {
 return t.execute();
 }

 CS 138 VI–78
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

RMI: the Server (2)
public static void main(String[] args) {
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new SecurityManager());

 }

 try {
 String name = "Compute";

 Compute engine = new ComputeEngine();
 Compute stub =

 (Compute) UnicastRemoteObject.exportObject(engine, 0);
 Registry registry = LocateRegistry.getRegistry();

 registry.rebind(name, stub);
 System.out.println("ComputeEngine bound");

 } catch (Exception e) {
 System.err.println("ComputeEngine exception:");

 e.printStackTrace();

 }

 }

}

 CS 138 VI–79
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

RMI: the Client
public class ComputePi {
 public static void main(String args[]) {
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new SecurityManager());

 }

 try {
 String name = "Compute";

 Registry registry = LocateRegistry.getRegistry(args[0]);

 Compute comp = (Compute) registry.lookup(name);

 Pi task = new Pi(Integer.parseInt(args[1]));
 BigDecimal pi = comp.executeTask(task);

 System.out.println(pi);

 } catch (Exception e) {
 System.err.println("ComputePi exception:");

 e.printStackTrace();

 }

 }

}

 CS 138 VI–80
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

RMI: the Client’s Compute
Object

package client;

import compute.Task;
import java.io.Serializable;
import java.math.BigDecimal;

public class Pi implements Task<BigDecimal>, Serializable {
 private final int digits;
 public Pi(int digits) {this.digits = digits;} // constructor
 // lots of stuff deleted …

 public BigDecimal execute() {
 return computePi(digits);
 }

 // lots more stuff deleted …

}

 CS 138 VI–81
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

Some content from David Andersen.

Other examples
•  Grpc. Developed at Google

– Protocol Buffers as an IDL
– HTTP2 as a transport
– Many languages (C, C++, Java, Go, Node.js,

Python, Ruby, Objective-C, PHP and C#)
•  Thrift.

– Developed at Facebook.
– Now Apache Open Source. Supports multiple

data encodings & transport mechanisms.
Even more languages.

•  Avro. Also Apache standard. Created as part
of Hadoop project. Uses JSON. Not as
elaborate as Thrift.

