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Today’s Lecture 

•  Sockets 
•  RPC 

– Overview 
– Challenges 
– Examples 
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Sockets 
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Sockets 

•  TCP and UDP allow sending and receiving of 
bytes over the network 

– TCP: reliable infinite stream of bytes between 
two processes 

– UDP: unreliable messages (up to 64KB) 
•  How do applications access these protocols? 
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Using TCP/IP 

•  Sockets API.  
– Originally from BSD, widely implemented (*BSD, Linux, 

Mac OS X, Windows, …) 
–  Important do know and do once 
– Higher-level APIs build on them 

•  After basic setup, much like files 
– Sockets are file descriptors 
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Types of Sockets 

•  Datagram sockets: unreliable message delivery 
– With IP, gives you UDP 
– Send atomic messages, which may be reordered or lost 

•  Stream sockets: bi-directional pipes 
– With IP, gives you TCP 
– Bytes written on one end read on another 

•  There are other types 
– Eg. Unix domain sockets 

-  Endpoints are filenames 
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Sockets 
SECTION 4.2 THE API FOR THE INTERNET PROTOCOLS 149

4.2.2 Sockets
Both forms of communication (UDP and TCP) use the socket abstraction, which 
provides an endpoint for communication between processes. Sockets originate from 
BSD UNIX but are also present in most other versions of UNIX, including Linux as well 
as Windows and the Macintosh OS. Interprocess communication consists of 
transmitting a message between a socket in one process and a socket in another process, 
as illustrated in 

Figure 4.2 Sockets and ports

message

agreed portany port socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports
client server

Figure 4.2. For a process to receive messages, its socket must be bound 
to a local port and one of the Internet addresses of the computer on which it runs. 
Messages sent to a particular Internet address and port number can be received only by 
a process whose socket is associated with that Internet address and port number. 
Processes may use the same socket for sending and receiving messages. Each computer 
has a large number (216) of possible port numbers for use by local processes for 
receiving messages. Any process may make use of multiple ports to receive messages, 
but a process cannot share ports with other processes on the same computer. (Processes 
using IP multicast are an exception in that they do share ports – see Section 4.4.1.)
However, any number of processes may send messages to the same port. Each socket is 
associated with a particular protocol – either UDP or TCP. 

Java API for Internet addresses  •  As the IP packets underlying UDP and TCP are sent 
to Internet addresses, Java provides a class, InetAddress, that represents Internet 
addresses. Users of this class refer to computers by Domain Name System (DNS) 
hostnames (see Section 3.4.7). For example, instances of InetAddress that contain 
Internet addresses can be created by calling a static method of InetAddress, giving a 
DNS hostname as the argument. The method uses the DNS to get the corresponding 
Internet address. For example, to get an object representing the Internet address of the 
host whose DNS name is bruno.dcs.qmul.ac.uk, use:

InetAddress aComputer = InetAddress.getByName("bruno.dcs.qmul.ac.uk");

This method can throw an UnknownHostException. Note that the user of the class does 
not need to state the explicit value of an Internet address. In fact, the class encapsulates 
the details of the representation of Internet addresses. Thus the interface for this class is 
not dependent on the number of bytes needed to represent Internet addresses – 4 bytes 
in IPv4 and 16 bytes in IPv6. 

From Colouris, chapter 4 



 CS 138 VI–8 
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.   

Some content from David Andersen. 

System calls for using TCP 

Client  Server    
   socket – create socket 
   bind – assign address, port 
   listen – listen for clients 

socket – create socket 
bind* – assign address (optional) 
connect – connect to listening socket 

   accept – accept connection 
 
Both can read and write from the connection. 
Both can call close to end the connection. 
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Go’s Interface is not too different 

ln, err := net.Listen("tcp", ":8080")
if err != nil {
    // handle error
}
for {
    conn, err := ln.Accept()
    if err != nil {
        // handle error
    }
    go handleConnection(conn)
}

Server: 
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Go’s Interface is not too different 

conn, err := net.Dial("tcp", "google.com:80")
if err != nil {
    // handle error
}
fmt.Fprintf(conn, "GET / HTTP/1.0\r\n\r\n")
status, err := 
bufio.NewReader(conn).ReadString('\n')
// ...

Client: 
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Limitations 

•  Strictly an interface to the transport layer 
–  (or lower) 

•  Reliability 
–  if the receiving machine is temporarily not 

available, will sent data eventually reach it? 
– how is the sender notified if sent data does not 

arrive at destination machine? 
– how is the sender notified if sent data does not 

arrive at destination application? 
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Writing Distributed Programs 

•  Concerns 
–  transparency 
– portability 
–  interoperability 

•  Solutions 
– RPC 
– RMI 
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Common communication 
pattern 

Client Server Hey, do something 

working { 

Done/Result 
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Writing it by hand... 

•  eg, if you had to write a, say, password 
cracker 

struct foomsg {
  u_int32_t len;
}

send_foo(char *contents) {
   int msglen = sizeof(struct foomsg) + strlen(contents);
   char buf = malloc(msglen);
   struct foomsg *fm = (struct foomsg *)buf;
   fm->len = htonl(strlen(contents));
   memcpy(buf + sizeof(struct foomsg),
          contents,
          strlen(contents));
   write(outsock, buf, msglen);
} 

Then wait for response, etc. 
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RPC 

•  A type of client/server 
communication 

•  Attempts to make remote procedure 
calls look like local ones 

{ ... 
   foo() 
} 
void foo() { 
  invoke_remote_foo() 
} 
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Go Example 

•  Need some setup in advance of this but… 
 
// Synchronous call 
args := &server.Args{7,8} 
var reply int 
err = client.Call("Arith.Multiply", args, 
&reply) 
if err != nil { 

 log.Fatal("arith error:", err) 
} 
fmt.Printf("Arith: %d*%d=%d", args.A, args.B, 
reply) 

 
16 
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RPC Goals 

•  Ease of programming 
•  Hide complexity  
•  Automates task of implementing 

distributed computation 
•  Familiar model for programmers 

(just make a function call) 

Historical note:  Seems obvious in retrospect, but RPC was only invented in the 
‘80s.  See Birrell & Nelson, “Implementing Remote Procedure Call” ... or 
Bruce Nelson, Ph.D. Thesis, Carnegie Mellon University:  Remote Procedure 
Call., 1981 :) 
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Hiding Complexity 

•  Makes a call to a remote service look 
like a local call 

– RPC makes transparent whether server is 
local or remote 

– RPC allows applications to become 
distributed transparently 

– RPC makes architecture of remote 
machine transparent 

 

18 
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But it’s not always simple 

•  Calling and called procedures run on 
different machines, with different 
address spaces 

– And perhaps different environments .. or 
operating systems .. 

•  Must convert to local representation of 
data 

•  Machines and network can fail 
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Local Procedure Calls 

// Client code 
 . . . 

result = procedure(arg1, arg2); 
 . . . 

// Server code 
result_t procedure(a1_t arg1, a2_t arg2) { 
  . . . 

 return(result); 
} 
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Remote Procedure Calls (1) 

// Client code 
 . . . 

result = procedure(arg1, arg2); 
 . . . 

// Server code 
result_t procedure(a1_t arg1, a2_t arg2) { 
  . . . 

 return(result); 
} 

? 
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Remote Procedure Calls (2) 

// Client code 
 . . . 

result = procedure(arg1, arg2); 
 . . . 

// Server code 
result_t procedure(a1_t arg1, a2_t arg2) { 
  . . . 

 return(result); 
} 

Client-Side Stub 

Server-Side Stub 



 CS 138 VI–23 
Content from David Andersen 

Stubs: obtaining transparency 

•  Compiler generates from API stubs for a 
procedure on the client and server 

•  Client stub  
– Marshals arguments into machine-independent 

format 
– Sends request to server 
– Waits for response 
– Unmarshals result and returns to caller 

•  Server stub 
– Unmarshals arguments and builds stack frame 
– Calls procedure 
– Server stub marshals results and sends reply 

23 
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“stubs” and IDLs 

•  RPC stubs do the work of marshaling and 
unmarshaling data 

•  But how do they know how to do it? 
•  Two basic alternatives 

– Write a description of the function signature 
using an IDL -- interface description language. 

-  Lots of these.  Some look like C, some look 
like XML, ... details don’t matter much. 

– Use reflection information to do this 
-  Go-rpc, Java RMI 
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Remote Procedure Calls (1) 

•  A remote procedure call occurs in the 
following steps: 

1.  The client procedure calls the client stub in the 
normal way. 

2.  The client stub builds a message and calls the 
local operating system. 

3.  The client’s OS sends the message to the 
remote OS. 

4.  The remote OS gives the message to the server 
stub. 

5.  The server stub unpacks the parameters and 
calls the server. 
                 

 Continued … 

25 
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Remote Procedure Calls (2) 

… 
6. The server does the work and returns the result to 

the stub. 
7. The server stub packs it in a message and calls its 

local OS. 
8. The server’s OS sends the message to the client’s 

OS. 
9. The client’s OS gives the message to the client 

stub. 
10. The stub unpacks the result and returns to the 

client. 

26 
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Block Diagram 

Client 

Application 

Stub 

RPC support 
code 

Transport 
protocol 

Server 

Remote 
procedure 

Stub 

RPC support 
code 

Transport 
protocol 



 CS 138 VI–28 
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.   

Some content from David Andersen. 

Today’s Lecture 

•  Sockets 
•  RPC 

– Overview 
– Challenges 
– Examples 
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Local vs. Distributed 

•  Latency 
•  Memory access 
•  Partial failure 
•  Concurrency 
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Latency 

•  Remote invocation of objects takes much 
longer than local invocation 

– can this be ignored at first and dealt with later? 
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Synchronous RPC 

31 

•  The interaction between client and  
server in a traditional RPC. 
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Asynchronous RPC (1) 

32 

•  The interaction using asynchronous RPC. 
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Asynchronous RPC (2) 

33 

•  A client and server interacting through  
two asynchronous RPCs. 
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Concurrency 

•  Distributed programs have the same 
concurrency issues as multithreaded 
programs 

– Do they? In a single address space… 
-  all threads are under control of a 

common OS 
-  synchronization is easy 
-  fate sharing 
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RPC failures 

•  Request from cli à srv lost 
•  Reply from srv à cli lost 
•  Server crashes after receiving 

request 
•  Client crashes after sending 

request 
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Partial failures 

•  In local computing: 
–  if machine fails, application fails 

•  In distributed computing: 
–  if a machine fails, part of application fails 
– one cannot tell the difference between a 

machine failure and network failure 
– one cannot (in principle) tell the difference 

between a failure and a really long execution! 
•  How to make partial failures transparent to 

client? 

36 
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Strawman solution 

•  Make remote behavior identical to local 
behavior: 

– Every partial failure results in complete failure 
-  You abort and reboot the whole system 

– You wait patiently until system is repaired 
•  Problems with this solution: 

– Many catastrophic failures 
– Clients block for long periods 

-  System might not be able to recover 
 
 

37 
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Real solution: break 
transparency 

•  Possible semantics for RPC: 
– Exactly-once 

-  Impossible in practice 
– At least once:  

-  Only for idempotent operations 
– At most once 

-  Zero, don’t know, or once 
– Zero or once 

-  Transactional semantics 

38 
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Real solution: break 
transparency 

•  At-least-once:  Just keep retrying on client side until 
you get a response. 
–  Server just processes requests as normal, 

doesn’t remember anything.  Simple! 
•  At-most-once:  Server might get same request 

twice... 
–  Must re-send previous reply and not process 

request (implies:  keep cache of handled 
requests/responses) 

–  Must be able to identify requests 
–  Strawman:  remember all RPC IDs handled.  -> 

Ugh!  Requires infinite memory. 
–  Real:  Keep sliding window of valid RPC IDs, have 

client number them sequentially. 
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Uncertainty 

Client Server 
Request 

Client Server 

Client Server 
Request 

Client Server 

Client Server 
Request 

Client Server 
Response 
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Idempotent Procedures 
Client Server 

Write File A Block 0 

Client Server 
Done 

Client Server 
(Ahem …) Write File A Block 0 

Client Server 
Done 

At-least-once semantics 
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Non-Idempotent Procedures 

Client Server Transfer $1000 from Kyle’s 
Account to Andy’s 

Client Server 
Done 

Client Server Do it again and again and 
again! 

Client Server 
Done 

At-most-once semantics 
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Maintaining History 

Client Server Transfer $1000 from Kyle’s 
Account to Andy’s 

Client Server 
Done 

Client Server Do it again! 

Client Server 
Done (replay) 

At-most-once semantics 
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No History 

Client Server Transfer $1000 from Kyle’s 
Account to Andy’s 

Client Server 
Done 

Client Server Do it again! 

Client Server 
Sorry … 

At-most-once semantics 

CRASH!! 
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Coping 

Fault tolerance measures Invocation 
Semantics 

Retransmit 
request 
message 

Duplicate 
filtering 

Re-execute 
procedure or 
retransmit reply 

No Not applicable Not applicable Maybe 
Yes No Re-execute 

procedure 
At-least-once 

Yes Yes Retransmit reply At-most-once 
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Exactly-Once? 

•  Sorry - no can do in general. 
•  Imagine that message triggers an 

external physical thing (say, a 
robot fires a nerf dart at the 
professor) 

•  The robot could crash immediately 
before or after firing and lose its 
state.  Don’t know which one 
happened.  Can, however, make 
this window very small. 
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Memory Access 

•  Pointers work locally 
•  Can they be made to work remotely? 

– yes … (but it’s complicated) 
– but don’t use a remote pointer thinking it’s 

just like a local pointer 
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Implementation Concerns 

•  As a general library, performance is often a 
big concern for RPC systems 

•  Major source of overhead:  copies and 
marshaling/unmarshaling overhead 

•  Zero-copy tricks: 
– Representation:  Send on the wire in native 

format and indicate that format with a bit/byte 
beforehand.  What does this do?  Think about 
sending uint32 between two little-endian 
machines (DEC RPC) 

– Scatter-gather writes (writev() and friends) 
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Summary:  
expose remoteness to client 

•  Expose RPC properties to client, since you 
cannot hide them 

•  Application writers have to decide how to 
deal with partial failures 

– Consider: E-commerce application vs. game 

49 
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Important Lessons 

•  Procedure calls 
–  Simple way to pass control and data 
–  Elegant transparent way to distribute application 
– Not only way… 

•  Hard to provide true transparency 
–  Failures 
–  Performance 
– Memory access 
–  Etc. 

•  How to deal with hard problem à give up and let 
programmer deal with it 

–  “Worse is better” 

50 
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Today’s Lecture 

•  Sockets 
•  RPC 

– Overview 
– Challenges 
– Examples 
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Two styles of RPC 
implementation 

•  Shallow integration.  Must use lots of library calls 
to set things up: 

– How to format data 
– Registering which functions are available and how 

they are invoked. 

•  Deep integration. 
– Data formatting done based on type declarations 
–  (Almost) all public methods of object are registered. 

•  Sun RPC, XMLRPC, GRPC, Thrift 
•  Go and Java use the latter. 

52 
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Example: Sun XDR (RFC 4506) 

•  External Data Representation for SunRPC 
•  Types:  most of C types 
•  No tags (except for array lengths) 

– Code needs to know structure of message 
•  Usage: 

– Create a program description file (.x) 
– Run rpcgen program 
–  Include generated .h files, use stub functions 

•  Very C/C++ oriented 
– Although encoders/decoders exist for other 

languages 
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Example 
typedef struct { 

int   comp1; 
double  comp2; 
long long  comp3[6]; 
char   *annotation; 

} value_t; 
 
typedef struct { 

value_t  element; 
value_t  *next; 

} list_t; 
 
char add(int key, value_t value); 
char remove(int key, value_t value); 
list_t query(int key); 
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A Specification 
typedef struct value { 

int    comp1; 
double   comp2; 
hyper   comp3[6]; 
string   annotation<255>; 

} value_t; 
 
typedef struct list { 

value_t  element; 
struct list  *next; 

} list_t; 
 
program DB { 

 version DBVERS { 
  bool add(int key, value_t value) = 1; 
  bool remove(int key, value_t value) = 2; 
  list_t query(int key) = 3; 
 } = 1; 

} = 0x2000000A;  

•  Rpcgen generates marshalling/unmarshalling 
code, stub functions, you fill out the actual code 
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XDR Primitive Types 

•  Integer 
•  Unsigned integer 
•  Boolean 
•  Hyper integer 
•  Unsigned hyper integer 
•  Fixed-length opaque data 
•  Variable-length opaque data 
•  String 
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XDR Structured Types 

•  Fixed-length array 
•  Variable-length array 
•  Discriminated union 
•  Linked lists 
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Generated Header File 
struct value { 

 int comp1; 

 double comp2; 

 int64_t comp3[6]; 

 char *annotation; 

}; 

typedef struct value value; 
 

typedef value value_t; 

 

struct list { 

 value_t element; 

 struct list *next; 

}; 

typedef struct list list; 

typedef list list_t; 
 

struct add_1_argument { 

 int key; 

 value_t value; 

}; 

typedef struct add_1_argument 
  add_1_argument; 

 

struct remove_1_argument { 

 int key; 

 value_t value; 

}; 

typedef struct remove_1_argument 
  remove_1_argument; 
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Placing Calls 

 result_1 = add_1(add_1_key, add_1_value, clnt); 
 if (result_1 == (bool_t *) NULL) { 

  clnt_perror (clnt, "call failed"); 

 } 

 result_2 = remove_1(remove_1_key, remove_1_value, clnt); 

 if (result_2 == (bool_t *) NULL) { 

  clnt_perror (clnt, "call failed"); 
 } 

 result_3 = query_1(query_1_key, clnt); 

 if (result_3 == (list_t *) NULL) { 

  clnt_perror (clnt, "call failed"); 

 } 

 clnt_destroy (clnt); 

} 
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DCE RPC 

•  Designed by Apollo and Digital in the 1980s 
– both companies later absorbed by HP 

•  Does everything ONC RPC can do, and more 
•  Basis for Microsoft RPC 
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Same Example … 

typedef struct { 
double  comp1; 
int   comp2; 
long long   comp3; 
char   *annotation; 

} value_t; 
 
char add(int key, value_t value); 
char remove(int key, value_t value); 
int query(int key, int number, value_t values[ ]); 
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An Interface Specification 

interface db { 
typedef struct { 

double comp1; 
long  comp2; 
hyper  comp3; 
[string, ptr] 

ISO_LATIN_1 
*annotation; 

} value_t; 
 
boolean add( 

[in] long  key, 
[in] value_t  value 

); 

boolean remove( 
[in] long  key, 
[in] value_t  value 

); 
 

long query( 
[in] long  key, 
[in] long  number, 
[out, size_is(number)] 

value_t  values[ ] 
); 

} 



 CS 138 VI–63 
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.   

Some content from David Andersen. 

An Interface Specification 
(notes continued) 

interface db { 
typedef struct { 

double comp1; 
long  comp2; 
hyper  comp3; 
[string, ptr] 

ISO_LATIN_1 
*annotation; 

} value_t; 
 
boolean add( 

[in] long  key, 
[in] value_t  value 

); 

boolean remove( 
[in] long  key, 
[in] value_t  value 

); 
 

long query( 
[in] long  key, 
[in] long  number, 
[out, size_is(number)] 

value_t  values[ ] 
); 

} 
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Representing an Array 

Length Item 1 Item 2 … Item n 
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Representing Pointers 

P *P sender 

*P marshalled 

P *P receiver 

on stack on callee’s 
stack 
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Complications 
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Marshalling Unrestricted 
Pointers 

A: 

B: C: 

D: E: 

2 
4 

0 (A): 

-1 
6 

2 (B): 

6 
8 

4 (C): 

6 (D): 

8 (E): 
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Referring to Server State 

Client 
Server 

pointer 
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Maintaining Client State on 
Servers 

interface trees { 
 typedef [context_handle] void *tree_t; 
 
 void create ( 
  [in]  long value, 
  [out] tree_t pine 
 ); 
 
 void insert ( 
  [in] long value, 
  [in, out] tree_t pine 
 ); 
} 
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Go RPC 
package server 
 

type Args struct { 
    A, B int 
} 

type Quotient struct { 
    Quo, Rem int 
} 
type Arith int 

 
func (t *Arith) Multiply(args *Args, reply *int) error { 
    *reply = args.A * args.B 

    return nil 
} 
func (t *Arith) Divide(args *Args, quo *Quotient) error { 
    if args.B == 0 { 

        return errors.New("divide by zero") 
    } 
    quo.Quo = args.A / args.B 

    quo.Rem = args.A % args.B 
    return nil 
} 



 CS 138 VI–71 
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.   

Some content from David Andersen. 

Server Startup 

arith := new(Arith) 
rpc.Register(arith) 
rpc.HandleHTTP() 
l, e := net.Listen("tcp", ":1234") 
if e != nil { 
    log.Fatal("listen error:", e) 
} 
go http.Serve(l, nil) 
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Client Startup 

client, err := rpc.DialHTTP("tcp", serverAddress + ":1234") 
if err != nil { 
    log.Fatal("dialing:", err) 
} 
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Client Call 

 
// Synchronous call 
args := &server.Args{7,8} 
var reply int 
err = client.Call("Arith.Multiply", args, 
&reply) 
if err != nil { 

 log.Fatal("arith error:", err) 
} 
fmt.Printf("Arith: %d*%d=%d", args.A, args.B, 
reply) 

 

73 
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Client Call 

// Asynchronous call 
quotient := new(Quotient) 
divCall := client.Go("Arith.Divide", args, 
quotient, nil) 
replyCall := <-divCall.Done   // will be equal to 
divCall 
// check errors, print, etc. 

74 
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RMI: a Remote Interface 

package compute; 
 

import java.rmi.Remote; 
import java.rmi.RemoteException; 
 

public interface Compute extends Remote { 
    <T> T executeTask(Task<T> t) throws RemoteException; 
} 
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RMI: the Argument 

package compute; 
 

public interface Task<T> { 
    T execute(); 

} 
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RMI: the Server (1) 

package engine; 
 

import java.rmi.RemoteException; 
import java.rmi.registry.LocateRegistry; 
import java.rmi.registry.Registry; 
import java.rmi.server.UnicastRemoteObject; 
import compute.Compute; 
import compute.Task; 
 

public class ComputeEngine implements Compute { 
    public ComputeEngine() { super(); } 
    public <T> T executeTask(Task<T> t) { 
        return t.execute(); 
    } 
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RMI: the Server (2) 
public static void main(String[] args) { 
        if (System.getSecurityManager() == null) { 
            System.setSecurityManager(new SecurityManager()); 

        } 

        try { 
            String name = "Compute"; 

            Compute engine = new ComputeEngine(); 
            Compute stub = 

                (Compute) UnicastRemoteObject.exportObject(engine, 0); 
            Registry registry = LocateRegistry.getRegistry(); 

            registry.rebind(name, stub); 
            System.out.println("ComputeEngine bound"); 

        } catch (Exception e) { 
            System.err.println("ComputeEngine exception:"); 

            e.printStackTrace(); 

        } 

    } 

} 
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RMI: the Client 
public class ComputePi { 
    public static void main(String args[]) { 
        if (System.getSecurityManager() == null) { 
            System.setSecurityManager(new SecurityManager()); 

        } 

        try { 
            String name = "Compute"; 

            Registry registry = LocateRegistry.getRegistry(args[0]); 

            Compute comp = (Compute) registry.lookup(name); 

            Pi task = new Pi(Integer.parseInt(args[1])); 
            BigDecimal pi = comp.executeTask(task); 

            System.out.println(pi); 

        } catch (Exception e) { 
            System.err.println("ComputePi exception:"); 

            e.printStackTrace(); 

        } 

    }     

} 
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RMI: the Client’s Compute 
Object 

package client; 
 

import compute.Task; 
import java.io.Serializable; 
import java.math.BigDecimal; 
 

public class Pi implements Task<BigDecimal>, Serializable { 
    private final int digits; 
    public Pi(int digits) {this.digits = digits;} // constructor 
    // lots of stuff deleted … 

    public BigDecimal execute() { 
        return computePi(digits); 
    } 

    // lots more stuff deleted … 

} 
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Other examples 
•  Grpc. Developed at Google 

– Protocol Buffers as an IDL 
– HTTP2 as a transport 
– Many languages (C, C++, Java, Go, Node.js, 

Python, Ruby, Objective-C, PHP and C#) 
•  Thrift.   

– Developed at Facebook.   
– Now Apache Open Source. Supports multiple 

data encodings & transport mechanisms.  
Even more languages. 

•  Avro.  Also Apache standard.  Created as part 
of Hadoop project.  Uses JSON.  Not as 
elaborate as Thrift. 


