


  





































The basic theory of operation of RPC is pretty straightforward. But, to understand remote 
procedure calls, let’s first make sure that we understand local procedure calls. The client (or 
caller) supplies some number of arguments and invokes the procedure. The server (or callee) 
receives the invocation and gets a (shallow) copy of the arguments (other languages, such as 
C++, provide other argument-passing modes, but copying is all that is provided in C). In the 
usual implementation, the callee’s copy of the arguments have been placed on the runtime 
stack by the caller—the callee code knows exactly where to find them. When the call 
completes, a return value may be supplied by the callee to the caller. Some of the arguments 
might be out arguments—changes to their value are reflected back to the caller. This is 
handled in C indirectly—the actual argument, passed by copying, is a pointer to some value. 
The callee follows the pointer and modifies the value. 



Now suppose that the client and server are on separate machines. As much as possible, we 
would like remote procedure calling to look and behave like local procedure calling. 
Furthermore, we would like to use the same languages and compilers for the remote case as 
in the local case. But how do we make this work? A remote call is very different from a local 
call. For example, in the local call, the caller simply puts the arguments on the runtime stack 
and expects the callee to find them there. In C, the callee returns data through out 
arguments by following a pointer into the space of the caller. These techniques simply don’t 
work in the remote case. 



The solution is to use stub procedures: the client places a call to something that has the 
name of the desired procedure, but is actually a proxy for it, known as the client-side stub. 
This proxy gathers together all of the arguments (actually, just the in and in-out arguments) 
and packages them into a message that it sends to the server. The server has a 
corresponding server-side stub that receives the invocation message, pulls out the 
arguments, and calls the actual (remote) procedure. When this procedure returns, returned 
data is packaged by the server-side stub into another message, which is transmitted back to 
the client-side stub, which pulls out the data and returns it to the original caller. From the 
points of view of the caller and callee procedure, the entire process appears to be a local 
procedure call—they behave no differently for the remote case. 



We will see later how these are generated. 











  



So, what are the differences between local and distributed, and can we create a proper illusion? 
 























Consider this slide first with the assumption that RPC is layered on UDP. Thus, since the 
response acts as the acknowledgement, there is uncertainty as to whether the request was 
handled by the server. 

Does this uncertainty go away if RPC is layered on TCP? If you consider the possibility that 
the TCP connection might be lost, perhaps due to a transient network problem, the answer is 
clearly no. For example, suppose the TCP connection is lost just after the server receives the 
request. With no connection, the server cannot send a response, so the client is uncertain 
about what happened. 



A procedure is idempotent if the effect of executing it twice in a row is the same as 
executing it just once. With such procedures, the client may repeatedly send a request until 
it finally gets a response. If an RPC protocol depends on such retries, it is said to have at-
least-once semantics — clients are assured that, after all the retries, the remote procedure is 
executed at least once. 



Not everything is idempotent! If we have non-idempotent procedures, then RPC requests 
should not be blindly retried, but instead should be sent just once. RPC protocols that do 
this are said to have at-most-once semantics. DCE RPC guarantees at-most-once semantics 
by default, though a remote procedure may be declared (in its IDL description) to be 
idempotent, in which case calls are done using at-least-once semantics. 



The server might keep track of what operations it has already performed and what the 
responses were. If it gets a repeat of a previous request, it merely repeats the original 
response. 



If the server crashed and no longer has its history information, it can respond by raising an 
exception at the client, indicating that it has no knowledge as to whether the operation has 
taken place. But it guarantees that it hasn’t taken place more than once. 



This table is Figure 5.9 of the text. Note the distinction made between “maybe” and “at-most-
once” semantics. 













  







Here’s an example of a C declaration for a collection of simple database procedures. 



Here’s a specification of our database interface written in the XDR language. This can now be 
compiled by rpcgen into a pair of stubs, server and client. See http://docs.oracle.com/cd/
E19120-01/open.solaris/816-1435/rpcgenpguide-24243/index.html for a description of how to 
use rpcgen. 



XDR is based on a number of primitive types, whose representation is fixed. We won’t go into 
exactly what these representations are, see RFC 1832 (http://www.faqs.org/rfcs/rfc1832.html) 
for details.  



One builds more complicated data types from the primitives by using the XDR’s structured type 
constructors. We mention the most important ones on the slide; we see them in use in the next 
several slides. 



After running rpcgen on our XDR description, we get our stubs, code for marshalling and 
unmarshalling, and a common header file, shown here. 



Here the client places calls to each of the procedures in our remote program. 





Now we re-do the example using DCE RPC. 



DCE RPC uses an augmented C syntax known as interface definition language (IDL) to 
express its interfaces. By compiling a description written in IDL (using a special IDL 
compiler), one automatically produces the client- and server-side stubs. 

Here we have the IDL description for the simple database example of the previous slide. It 
starts with the declaration of a data type that is that of the somewhat complex items stored 
in the database. Following this are the specifications of the three (remote) procedures that 
clients may call—one for adding values to the database, one for removing values, and one for 
issuing queries. Values are entered into the database in association with keys. The query 
operation returns all values, up to an indicated maximum number, that share the given key. 

One of the purposes of IDL is to overcome various shortcomings of the C syntax for 
declaring procedures. Among the issues are: 

•  Which arguments are input arguments, which are output arguments, and which are 
both? There is no way to determine this from standard C syntax. With IDL, we have new 
attributes, enclosed in square brackets, that identify the use of the arguments. 

•  What is an integer? C has three signed integer types: char, short, and long. One can 
also declare something to be an int, but, depending on the architecture, it will either be 
a short or a long. (Of course, we must at some point deal with 64-bit architectures. IDL 
has a 64-bit integer type called hyper.) Short and long are pretty straightforward, but 
what is a char? Its name certainly implies some ambiguity. To eliminate this ambiguity, 
in IDL, if one wants an 8-bit signed integer, one calls it a small. 



•  If we pass an array, how big is it? From our knowledge of the program, we can see that 
one of the arguments is the size of the two arrays, but how would the IDL compiler 
know this? It must know the size of the arrays, so that it can determine how much data 
to pass to the server (and how much data the server should pass to the client for output 
arguments). In the example here, we use the size_is attribute to notify the IDL compiler 
that one of the arguments is the size of the array. 

•  What does it mean to pass a pointer argument? For example, if one of the arguments is 
declared char * what would that mean? We certainly don’t want to follow a pointer on 
the server back to the client, so we should pass the data pointed to along with the 
pointer. But how much should be passed? Is a char * really a pointer to a single 
character? Is it a pointer to a null-terminated string? Is it a pointer to a counted array 
of bytes? The IDL syntax allows us to distinguish these cases (and supply whatever 
additional information is necessary). 

•  When we pass strings of characters, which character set are we referring to? ASCII is 
only acceptable (and just barely) in English-speaking countries (for which a seven-bit 
character set suffices). In the example we specify ISO_LATIN_1, an eight-bit character 
set, which is suitable for most of Europe and the Americas, but for little of Asia, which 
needs a sixteen-bit (at least) character set. 

There are alternatives to this approach to handling the data types of parameters. One 
popular approach, used in a early RPC protocol developed at Xerox in the ’70s and now 
popularized in Microsoft’s .Net and other recent systems, is, rather than have linked-in stubs 
that “know” the types of parameters, to send the typing information along with the 
parameters. Thus, rather than simply sending the integer “6”, what would be sent is “INT 6”. 
This is currently being done in conjunction with XML. 



To represent an array, we need to include its length. 



Marshalling pointers is sometimes pretty simple: one simply transmits the target of the 
pointer, rather than the pointer. Unmarshalling depends on whether the receiver is a callee 
(i.e, the pointer is an input parameter) or is a caller (the pointer is an output parameter). For 
a callee, the pointed-to item is copied into storage on the receiver’s stack in the server-side 
stub’s frame; the stub passes a pointer to the item to the remote procedure. For a caller, the 
marshaled item is copied into the original target of the pointer; the pointer itself doesn’t 
change. 



Three situations can complicate the marshalling of pointers. The first is when a pointer 
contains a null value: since it’s pointing at nothing, there’s nothing to send! The second is 
when two different pointers point to the same location (this is known as aliasing). It’s not 
enough to send the value of what the pointer points to: the reconstructed pointers on the 
receiver must also point to the same location. Lastly, what if the pointer points to a data 
structure containing another pointer? 



Marshalling unrestricted pointers, i.e., pointers that might be null, might be aliased, or 
might point to data structures containing other pointers, requires that one send a 
representation of how the data structure is organized. One such representation is illustrated 
in the slide: what the pointers point to is represented as an array and the pointers are 
represented as indices of the array. 





Rather than pass a tree back and forth between client and server, it might make more sense to 
leave the tree on the server and have the client merely send the server requests to perform 
operations on it. The interface shown here has two procedures—one to create and initialize a tree, 
and another to add new items to it. From the client’s point of view, the tree is represented as an 
opaque pointer of type context handle. This is created implicitly (on both client and server) via the 
use of the out parameter of the create procedure. The client holds onto this handle; whenever it 
uses the handle with the insert procedure, it is converted on the server side to point to whatever 
the pointer pointed to that the server originally returned via the out parameter of the create 
procedure. 

If the server crashes, then, from the client’s point of view, the context handle becomes useless. 
The client will be notified of a server failure if it tries to use the context handle after the server is 
known to have crashed. 

If the client crashes, then the server might want to be notified, especially if the client is the only 
one interested in the tree represented by the context handle. In the event of a crash, the server 
runtime will clean up its state. If the server is interested, it can define a cleanup (or rundown) 
procedure. The name of the cleanup procedure in this case would be tree_t_rundown, which will 
be called with the server-side pointer (to the tree) as the argument. The server, in this example, 
would free the storage that had been allocated for the tree. 



This go example from the gorpc page: http://golang.org/pkg/net/rpc/ 











This example (extending through the next five slides) is taken from http://download.oracle.com/
javase/tutorial/rmi/overview.html (and the code is copyrighted by Oracle). The idea is that we are 
designing a “compute server” to which we can send an object representing a computation to be 
performed. The server performs the computation and sends back the result. 

We start with a declaration of the server’s interface. By extending Remote, it becomes the 
interface to a remote object, meaning that clients with references to the object can invoke its 
methods remotely. Note that all methods of remote objects must be declared as throwing 
RemoteException, which occurs when there is some sort of problem, such as a communication 
error. 

The interface provides one method, that takes a parameterized type, Task<T> as an argument, 
and returns something of type T. Thus effectively the method has two parameters: Task<T> and T. 



Here is the declaration of Task<T>. Note that it is not a remote object, but will be passed (by 
copying) to the Compute object. 



Now that we’ve seen the declaration of the interface, we look at the server itself, whose code 
begins on this slide. The class Compute Engine implements the Compute interface. Its constructor 
simply calls upon the superclass constructor. Its executeTask method simply invokes the execute 
method of the supplied Task<T> argument. 



The main routine, which is static, after setting up a security manager (which restricts what 
remote invocations of the object can do) creates an instance of a ComputeEngine object and makes 
it available for clients to access. The first step in this is to set things up so that the object can 
receive invocations of its method from remote clients. The exportObject method of 
UnicastRemoteObject does this: the first argument is the remote interface being offered to clients 
and the second is the port on which to receive requests (0 means to use the default port). 

Note that remote interfaces do not have constructors, thus clients must be given some external 
means for getting references to remote objects. This is done here by putting the name of the object 
in the local registry along with the reference to the remote object provided by exportObject. Thus 
clients can contact the registry and get the reference associated with the name. 



Here we have code that’s run by clients. As with servers, a security manager must be set up to 
enforce restrictions on what objects can do that are returned by servers. The client then gets the 
object reference from the server’s registry (the name of the server is passed to the client code as an 
argument). It then creates an instance of an object that represents a computation to be done (in 
this case: compute the value of pi to a given number of digits). This object is passed to the remote 
object as an argument and the result of the computation is returned. 



Lastly we have the skeleton of the object that computes pi. Note that the object must implement 
Serializable so that it can be marshalled and unmarshalled. 




