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Sockets

« TCP and UDP allow sending and receiving of
bytes over the network

— TCP: reliable infinite stream of bytes between
two processes

— UDP: unreliable messages (up to 64KB)
* How do applications access these protocols?
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Using TCP/IP

» Sockets API.

— Originally from BSD, widely implemented (*BSD, Linux,
Mac OS X, Windows, ...)

— Important do know and do once
— Higher-level APIs build on them

 After basic setup, much like files
— Sockets are file descriptors
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Types of Sockets

+ Datagram sockets: unreliable message delivery

— With IP, gives you UDP

— Send atomic messages, which may be reordered or lost
» Stream sockets: bi-directional pipes

— With IP, gives you TCP

— Bytes written on one end read on another
* There are other types

— Eg. Unix domain sockets

- Endpoints are filenames
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Sockets
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System calls for using TCP

Client Server
socket — create socket
bind - assign address, port
listen - listen for clients
socket — create socket
bind* — assign address (optional)
connect — connect to listening socket
accept — accept connection

Both can read and write from the connection.
Both can call close to end the connection.

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 VI-8 i
Some content from David Andersen.




Go’s Interface is not too different

Server:

1ln, err := net.Listen("tcp", ":8080")
if err != nil {
// handle error

}
for {

conn, err := ln.Accept()

if err != nil {

// handle error

}

go handleConnection(conn)
}
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Go’s Interface is not too different
Client:

conn, err := net.Dial("tcp", "google.com:80")
if err != nil {
// handle error
}
fmt .Fprintf (conn, "GET / HTTP/1.0\r\n\r\n")

status, err :=
bufio.NewReader (conn) .ReadString('\n"')

/...
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Limitations

 Strictly an interface to the transport layer
— (or lower)
* Reliability

— if the receiving machine is temporarily not
available, will sent data eventually reach it?

— how is the sender notified if sent data does not
arrive at destination machine?

— how is the sender notified if sent data does not
arrive at destination application?
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Writing Distributed Programs

+ Concerns

— transparency

— portability

— interoperability
» Solutions

- RPC

— RMI
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Common communication
pattern

e \M

working {

Done/Result
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Writing it by hand...

* eg, if you had to write a, say, password

cracker

i

Istruct foomsg {

u_int32_t len;

send_foo(char *contents) {

int msglen = sizeof(struct foomsg) + strlen(contents);
char buf = malloc(msglen);
struct foomsg *fm = (struct foomsg *)buf;
fm->len = htonl(strlen(contents));
memcpy (buf + sizeof(struct foomsg),
contents,
strlen(contents));
write(outsock, buf, msglen);

Then wait for response, etc.
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RPC

® A type of client/server
communication

¢ Attempts to make remote procedure
calls look like local ones

{

}
void foo() {

invoke _remote foo()

00()

l
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Go Example

* Need some setup in advance of this but...

// Synchronous call

args := &server.Args{7,8}

var reply int

err = client.Call ("Arith.Multiply", args,
&reply)

if err '= nil {
log.Fatal("arith error:", err)

}

fmt.Printf ("Arith: %d*%d=%d", args.A, args.B,

reply)
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RPC Goals

Ease of programming

Hide complexity

Automates task of implementing
distributed computation

Familiar model for programmers
(just make a function call)

Historical note: Seems obvious in retrospect, but RPC was only invented in the

‘80s. See Birrell & Nelson, “Implementing Remote Procedure Call” ... or
Bruce Nelson, Ph.D. Thesis, Carnegie Mellon University: Remote Procedure
Call.,, 1981 :)
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Hiding Complexity

 Makes a call to a remote service look
like a local call
—RPC makes transparent whether server is
local or remote

—RPC allows applications to become
distributed transparently

— RPC makes architecture of remote
machine transparent
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But it’ s not always simple

« Calling and called procedures run on
different machines, with different
address spaces

— And perhaps different environments .. or
operating systems ..

* Must convert to local representation of
data

« Machines and network can fail
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Local Procedure Calls

// Client code

result = procedure(argl, arg2);

// Server code
result_t procedure(al_t argl, a2_t arg?) {

return(result);
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The basic theory of operation of RPC is pretty straightforward. But, to understand remote
procedure calls, let’s first make sure that we understand local procedure calls. The client (or
caller) supplies some number of arguments and invokes the procedure. The server (or callee)
receives the invocation and gets a (shallow) copy of the arguments (other languages, such as
C++, provide other argument-passing modes, but copying is all that is provided in C). In the
usual implementation, the callee’s copy of the arguments have been placed on the runtime
stack by the caller—the callee code knows exactly where to find them. When the call
completes, a return value may be supplied by the callee to the caller. Some of the arguments
might be out arguments—changes to their value are reflected back to the caller. This is
handled in C indirectly—the actual argument, passed by copying, is a pointer to some value.
The callee follows the pointer and modifies the value.



Remote Procedure Calls (1)

// Client code -

result = procedure(argl, arg2); B —
I

result_t procedure(al_t argl, a2_t arg2) {

- // Server code
I
y

return(result);
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Now suppose that the client and server are on separate machines. As much as possible, we
would like remote procedure calling to look and behave like local procedure calling.
Furthermore, we would like to use the same languages and compilers for the remote case as
in the local case. But how do we make this work? A remote call is very different from a local
call. For example, in the local call, the caller simply puts the arguments on the runtime stack
and expects the callee to find them there. In C, the callee returns data through out

arguments by following a pointer into the space of the caller. These techniques simply don’t
work in the remote case.



Remote Procedure Calls (2)

// Client code -

result = procedure(argl, arg2); B —
C )
- // Server code

result_t procedure(al_t argl, a2_t arg2) {
I

y return(result);
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The solution is to use stub procedures: the client places a call to something that has the
name of the desired procedure, but is actually a proxy for it, known as the client-side stub.
This proxy gathers together all of the arguments (actually, just the in and in-out arguments)
and packages them into a message that it sends to the server. The server has a
corresponding server-side stub that receives the invocation message, pulls out the
arguments, and calls the actual (remote) procedure. When this procedure returns, returned
data is packaged by the server-side stub into another message, which is transmitted back to
the client-side stub, which pulls out the data and returns it to the original caller. From the
points of view of the caller and callee procedure, the entire process appears to be a local
procedure call—they behave no differently for the remote case.



Stubs: obtaining transparency

+ Compiler generates from API stubs for a
procedure on the client and server

* Client stub

— Marshals arguments into machine-independent
format

— Sends request to server
— Waits for response
— Unmarshals result and returns to caller
» Server stub
— Unmarshals arguments and builds stack frame
— Calls procedure
— Server stub marshals results and sends reply

CS 138
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“stubs” and IDLs

* RPC stubs do the work of marshaling and
unmarshaling data

* But how do they know how to do it?

« Two basic alternatives

— Write a description of the function signature
using an IDL -- interface description language.

- Lots of these. Some look like C, some look
like XML, ... details don’t matter much.

— Use reflection information to do this
- Go-rpc, Java RMI

Content from David Andersen
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Remote Procedure Calls (1)

A remote procedure call occurs in the
following steps:

The client procedure calls the client stub in the
normal way.

The client stub builds a message and calls the
local operating system.

The client’s OS sends the message to the
remote OS.

T?ebremote OS gives the message to the server
stub.

The server stub unpacks the parameters and
calls the server.

Continued ...

CS 138
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Remote Procedure Calls (2)

6.The server does the work and returns the result to
the stub.

7.The server stub packs it in a message and calls its
local OS.

8.The server’s OS sends the message to the client’s
OsS.

9.The client’s OS gives the message to the client
stub.

10.The stub unpacks the result and returns to the
client.

CS 138
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Block Diagra

Application

I

I

Remote
procedure

I

I

RPC support RPC support
code code
Transport Transport
protocol protocol
Client Server
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Local vs. Distributed

+ Latency

* Memory access
Partial failure

+ Concurrency
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So, what are the differences between local and distributed, and can we create a proper illusion?



Latency

* Remote invocation of objects takes much
longer than local invocation

— can this be ignored at first and dealt with later?
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Synchronous RPC

Client Wait for result

/ N\
Call remote Return
procedure from call
Request Reply
Server Call local procedure ~ 1ime —»

and return results

* The interaction between client and
server in a traditional RPC.
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Asynchronous RPC (1)

Client ~ Wait for acceptance

/ \
Call remote Return
procedure from call
Request Accept request
Server Call local procedure Time —»

* The interaction using asynchronous RPC.
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Asynchronous RPC (2)

Wait for Interrupt cIient
) acceptance
ClienNt e————————--- -
/
Call remote Return .
rocedure from call eturn
b results Acknowledge
Accept
Request request
Server oo m— sttt —
Call local procedure Time —»
Call client with
one-way RPC

+ A client and server interacting through
two asynchronous RPCs.
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Concurrency

* Distributed programs have the same
concurrency issues as multithreaded
programs

—Do they? In a single address space...

- all threads are under control of a
common OS

- synchronization is easy
- fate sharing
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RPC failures

® Request from cli 2 srv lost
® Reply from srv = cli lost

Server crashes after receiving
request

® Client crashes after sending
request
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Partial failures

* In local computing:
— if machine fails, application fails
* In distributed computing:

— if a machine fails, part of application fails

—one cannot tell the difference between a
machine failure and network failure

— one cannot (in principle) tell the difference
between a failure and a really long execution!

* How to make partial failures transparent to
client?
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Strawman solution

 Make remote behavior identical to local
behavior:

— Every partial failure results in complete failure
- You abort and reboot the whole system
— You wait patiently until system is repaired
* Problems with this solution:
— Many catastrophic failures
— Clients block for long periods
- System might not be able to recover
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Real solution: break
transparency

* Possible semantics for RPC:
— Exactly-once
- Impossible in practice
— At least once:
- Only for idempotent operations
— At most once
- Zero, don’t know, or once
— Zero or once
- Transactional semantics
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Real solution: break
transparency

® At-least-once: Just keep retrying on client side until

you get a response.

— Server just processes requests as normal,
doesn’t remember anything. Simple!

At-most-once: Server might get same request
twice...

— Must re-send previous reply and not process
request (implies: keep cache of handled
requests/responses)

— Must be able to identify requests

— Strawman: remember al/l RPC IDs handled. ->
Ugh! Requires infinite memory.

— Real: Keep sliding window of valid RPC IDs, have
client number them sequentially.
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- Request o
)
Reque
. Request
Client 4 » Server
- Response
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Consider this slide first with the assumption that RPC is layered on UDP. Thus, since the
response acts as the acknowledgement, there is uncertainty as to whether the request was
handled by the server.

Does this uncertainty go away if RPC is layered on TCP? If you consider the possibility that
the TCP connection might be lost, perhaps due to a transient network problem, the answer is
clearly no. For example, suppose the TCP connection is lost just after the server receives the
request. With no connection, the server cannot send a response, so the client is uncertain
about what happened.



Idempotent Procedures

Write File A Block 0

Server

\ 4

LIt

Client

Done

Client Server

(Ahem ...) Write File A Block 0

Server

\4

Client

Done

Server

A

Client

v e

At-least-once semantics
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A procedure is idempotent if the effect of executing it twice in a row is the same as
executing it just once. With such procedures, the client may repeatedly send a request until
it finally gets a response. If an RPC protocol depends on such retries, it is said to have at-
least-once semantics — clients are assured that, after all the retries, the remote procedure is
executed at least once.



Non-ldempotent Procedures
e R
Client Server

o0

Do it again and again and
again!

At-most-once semantics
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Not everything is idempotent! If we have non-idempotent procedures, then RPC requests
should not be blindly retried, but instead should be sent just once. RPC protocols that do
this are said to have at-most-once semantics. DCE RPC guarantees at-most-once semantics
by default, though a remote procedure may be declared (in its IDL description) to be
idempotent, in which case calls are done using at-least-once semantics.



Maintaining History

»

Client Transfer $1000 from Kyle’s Server

Account to Andy’s
Done ‘
Client Server

'

Do it again!

Server

A 4

Client

Done (replay)

Client Server

e [t
0o

!

At-most-once semantics
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The server might keep track of what operations it has already performed and what the
responses were. If it gets a repeat of a previous request, it merely repeats the original
response.



No History

. Transfer $1000 from Kyle’s é
Client Account to Andy’s » Server ﬁ:
Done
Client Server

CRASH!!

Server
Sorry ... l
L Server

At-most-once semantics
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If the server crashed and no longer has its history information, it can respond by raising an
exception at the client, indicating that it has no knowledge as to whether the operation has
taken place. But it guarantees that it hasn’t taken place more than once.



Coping
Fault tolerance measures Invocation
Semantics
Retransmit Duplicate Re-execute
request filtering procedure or
message retransmit reply
No Not applicable Not applicable Maybe
Yes No Re-execute At-least-once
procedure
Yes Yes Retransmit reply At-most-once
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
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This table is Figure 5.9 of the text. Note the distinction made between “maybe” and “at-most-
once” semantics.



Exactly-Once?

® Sorry - no can do in general.

® Imagine that message triggers an
external physical thing (say, a
robot fires a nerf dart at the
professor)

® The robot could crash immediately
before or after firing and lose its
state. Don’t know which one
happened. Can, however, make
this window very small.

Content from David Andersen
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Memory Access

* Pointers work locally
» Can they be made to work remotely?

—yes ... (but it’s complicated)

—but don’t use a remote pointer thinking it’s
just like a local pointer
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Implementation Concerns

* As a general library, performance is often a
big concern for RPC systems

* Major source of overhead: copies and
marshaling/unmarshaling overhead

» Zero-copy tricks:

— Representation: Send on the wire in native
format and indicate that format with a bit/byte
beforehand. What does this do? Think about

sending uint32 between two little-endian
machines (DEC RPC)

— Scatter-gather writes (writev() and friends)

CS 138
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Summary:
expose remoteness to client

+ Expose RPC properties to client, since you
cannot hide them

« Application writers have to decide how to
deal with partial failures

— Consider: E-commerce application vs. game

Copyright © 2015 Tr.omas W. Doeppner, Rodrigo Fonseca.
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Important Lessons

* Procedure calls
— Simple way to pass control and data
— Elegant transparent way to distribute application
— Not only way...

* Hard to provide true transparency
— Failures
— Performance
— Memory access
— Etc.

* How to deal with hard problem > give up and let
programmer deal with it

— “Worse is better”
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Two styles of RPC
implementation

Shallow integration. Must use lots of library calls
to set things up:

— How to format data

— Registering which functions are available and how
they are invoked.

* Deep integration.
— Data formatting done based on type declarations
— (Almost) all public methods of object are registered.

Sun RPC, XMLRPC, GRPC, Thrift
+ Go and Java use the latter.

Content from David Andersen
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Example: Sun XDR (RFC 4506)

External Data Representation for SunRPC
Types: most of C types
No tags (except for array lengths)

— Code needs to know structure of message
Usage:

— Create a program description file (.x)

— Run rpcgen program

— Include generated .h files, use stub functions
Very C/C++ oriented

— Although encoders/decoders exist for other
languages

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
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Example

typedef struct {
int compl;
double comp2;
long long comp3[6];
char *annotation;
} value_t;

typedef struct {
value_t element;
value_t *next;
+list_t;

char add(int key, value_t value);
char remove(int key, value_t value);
list_t query(int key);

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
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Here’s an example of a C declaration for a collection of simple database procedures.



A Specification

typedef struct value {

int compl;

double comp?2;

hyper comp3[6];

string annotation<255>;
} value_t;

typedef struct list {

value _t element;
struct list *next;
) list_t;

program DB {
version DBVERS {
bool add(int key, value_t value) = 1;
bool remove(int key, value_t value) = 2;
list_t query(int key) = 3;
=1
} = 0x2000000A;

* Rpcgen generates marshalling/unmarshalling
code, stub functions, you fill out the actual code

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
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Here’s a specification of our database interface written in the XDR language. This can now be
compiled by rpcgen into a pair of stubs, server and client. See http://docs.oracle.com/cd/
E19120-01/open.solaris/816-1435/rpcgenpguide-24243 /index.html for a description of how to
use rpcgen.



XDR Primitive Types

* Integer

* Unsigned integer

* Boolean

* Hyper integer

* Unsigned hyper integer

* Fixed-length opaque data

» Variable-length opaque data
» String

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
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XDR is based on a number of primitive types, whose representation is fixed. We won’t go into
exactly what these representations are, see RFC 1832 (http://www.fags.org/rfcs/rfc1832.html)
for details.



XDR Structured Types

Fixed-length array
Variable-length array
* Discriminated union
Linked lists

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
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One builds more complicated data types from the primitives by using the XDR’s structured type
constructors. We mention the most important ones on the slide; we see them in use in the next
several slides.



Generated Header File

struct value { typedef list list_t;
int compl;
double comp?2; struct add_1_argument {
int64_t comp3[6]; int key;
char *annotation; value_t value;
3 I
typedef struct value value; typedef struct add_1_argument

add_1_argument;
typedef value value_t;
struct remove_1_argument {

struct list { int key;
value_t element; value_t value;
struct list *next; |5
|5 typedef struct remove_1_argument
typedef struct list list; remove_1_argument;
S VI-58 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
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After running rpcgen on our XDR description, we get our stubs, code for marshalling and
unmarshalling, and a common header file, shown here.



Placing Calls

result_1 = add_1(add_1_key, add_1_value, clnt);
if (result_1 == (bool_t *) NULL) {
clnt_perror (clnt, "call failed");
}
result_2 = remove_1(remove_1_key, remove_1_value, clnt);
if (result_2 == (bool_t *) NULL) {
clnt_perror (clnt, "call failed");
}
result_3 = query_1(query_1_key, cint);
if (result_3 == (list_t *) NULL) {
clnt_perror (clnt, "call failed");

}

clnt_destroy (clnt);

-

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
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Here the client places calls to each of the procedures in our remote program.



DCE RPC

* Designed by Apollo and Digital in the 1980s
— both companies later absorbed by HP

* Does everything ONC RPC can do, and more

» Basis for Microsoft RPC

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
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Same Example ...

typedef struct {
double compl;

int comp?2;
long long comp3;
char *annotation;

} value_t;

char add(int key, value_t value);
char remove(int key, value_t value);
int query(int key, int number, value_t values] |);
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Now we re-do the example using DCE RPC.



An Interface Specification

interface db { boolean remove(
typedef struct { [in]long key,
double compl; [in] value_t value
long comp?2; );
hyper comp3;
[string, ptr] long query(
ISO_LATIN_1 [in]long key,
*annotation; [in]long number,
} value_t; [out, size_is(number)]
value_t values| |
boolean add( );
[in]long key, }

[in] value_t value

)’

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
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DCE RPC uses an augmented C syntax known as interface definition language (IDL) to
express its interfaces. By compiling a description written in IDL (using a special IDL
compiler), one automatically produces the client- and server-side stubs.

Here we have the IDL description for the simple database example of the previous slide. It
starts with the declaration of a data type that is that of the somewhat complex items stored
in the database. Following this are the specifications of the three (remote) procedures that
clients may call—one for adding values to the database, one for removing values, and one for
issuing queries. Values are entered into the database in association with keys. The query
operation returns all values, up to an indicated maximum number, that share the given key.

One of the purposes of IDL is to overcome various shortcomings of the C syntax for
declaring procedures. Among the issues are:

* Which arguments are input arguments, which are output arguments, and which are
both? There is no way to determine this from standard C syntax. With IDL, we have new
attributes, enclosed in square brackets, that identify the use of the arguments.

* What is an integer? C has three signed integer types: char, short, and long. One can
also declare something to be an int, but, depending on the architecture, it will either be
a short or a long. (Of course, we must at some point deal with 64-bit architectures. IDL
has a 64-bit integer type called hyper.) Short and long are pretty straightforward, but
what is a char? Its name certainly implies some ambiguity. To eliminate this ambiguity,
in IDL, if one wants an 8-bit signed integer, one calls it a small.



An Interface Specification
(notes continued)

interface db { boolean remove(
typedef struct { [in]long key,
double compl; [in] value_t value
long comp?2; );
hyper comp3;
[string, ptr] long query(
ISO_LATIN_1 [in]long key,
*annotation; [in]long number,
} value_t; [out, size_is(number)]
value_t values| |
boolean add( );
[in]long key, }

[in] value_t value

)’

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

CS 138 VI-63

Some content from David Andersen.

* If we pass an array, how big is it? From our knowledge of the program, we can see that
one of the arguments is the size of the two arrays, but how would the IDL compiler
know this? It must know the size of the arrays, so that it can determine how much data
to pass to the server (and how much data the server should pass to the client for output
arguments). In the example here, we use the size_is attribute to notify the IDL compiler
that one of the arguments is the size of the array.

* What does it mean to pass a pointer argument? For example, if one of the arguments is
declared char * what would that mean? We certainly don’t want to follow a pointer on
the server back to the client, so we should pass the data pointed to along with the
pointer. But how much should be passed? Is a char * really a pointer to a single
character? Is it a pointer to a null-terminated string? Is it a pointer to a counted array
of bytes? The IDL syntax allows us to distinguish these cases (and supply whatever
additional information is necessary).

* When we pass strings of characters, which character set are we referring to? ASCII is
only acceptable (and just barely) in English-speaking countries (for which a seven-bit
character set suffices). In the example we specify ISO_LATIN_1, an eight-bit character
set, which is suitable for most of Europe and the Americas, but for little of Asia, which
needs a sixteen-bit (at least) character set.

There are alternatives to this approach to handling the data types of parameters. One
popular approach, used in a early RPC protocol developed at Xerox in the ’70s and now
popularized in Microsoft’s .Net and other recent systems, is, rather than have linked-in stubs
that “know” the types of parameters, to send the typing information along with the
parameters. Thus, rather than simply sending the integer “6”, what would be sent is “INT 6”.
This is currently being done in conjunction with XML.



Representing an Array

Length | Item 1 | Iltem 2 Item n
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To represent an array, we need to include its length.




Representing Pointers
sender P > *P
marshalled *P
receiver P > *P
on stack on callee’s
stack
cs s Vs T e e

Marshalling pointers is sometimes pretty simple: one simply transmits the target of the
pointer, rather than the pointer. Unmarshalling depends on whether the receiver is a callee
(i.e, the pointer is an input parameter) or is a caller (the pointer is an output parameter). For
a callee, the pointed-to item is copied into storage on the receiver’s stack in the server-side
stub’s frame; the stub passes a pointer to the item to the remote procedure. For a caller, the

marshaled item is copied into the original target of the pointer; the pointer itself doesn’t
change.



Complications

] -
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Three situations can complicate the marshalling of pointers. The first is when a pointer
contains a null value: since it’s pointing at nothing, there’s nothing to send! The second is
when two different pointers point to the same location (this is known as aliasing). It’s not
enough to send the value of what the pointer points to: the reconstructed pointers on the
receiver must also point to the same location. Lastly, what if the pointer points to a data
structure containing another pointer?



Marshalling Unrestricted
Pointers

0(A)] 2

A 4

2(B)]_ -1
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Marshalling unrestricted pointers, i.e., pointers that might be null, might be aliased, or
might point to data structures containing other pointers, requires that one send a
representation of how the data structure is organized. One such representation is illustrated
in the slide: what the pointers point to is represented as an array and the pointers are
represented as indices of the array.



Referring to Server State

Client

Server

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
Some content from David Andersen.

Cs 138 VI-68




Maintaining Client State on
Servers

interface trees {
typedef [context handle] void *tree t;

void create (
[in] long value,
[out] tree_t pine
);

void insert (
[in] long value,
[in, out] tree_t pine

);
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Rather than pass a tree back and forth between client and server, it might make more sense to
leave the tree on the server and have the client merely send the server requests to perform
operations on it. The interface shown here has two procedures—one to create and initialize a tree,
and another to add new items to it. From the client’s point of view, the tree is represented as an
opaque pointer of type context handle. This is created implicitly (on both client and server) via the
use of the out parameter of the create procedure. The client holds onto this handle; whenever it
uses the handle with the insert procedure, it is converted on the server side to point to whatever
the pointer pointed to that the server originally returned via the out parameter of the create
procedure.

If the server crashes, then, from the client’s point of view, the context handle becomes useless.
The client will be notified of a server failure if it tries to use the context handle after the server is
known to have crashed.

If the client crashes, then the server might want to be notified, especially if the client is the only
one interested in the tree represented by the context handle. In the event of a crash, the server
runtime will clean up its state. If the server is interested, it can define a cleanup (or rundown)
procedure. The name of the cleanup procedure in this case would be tree_t_rundown, which will
be called with the server-side pointer (to the tree) as the argument. The server, in this example,
would free the storage that had been allocated for the tree.



Go RPC

package server

type Args struct {
A, B int

}

type Quotient struct {
Quo, Rem int

}

type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
*reply = args.A * args.B
return nil
}
func (t *Arith) Divide (args *Args, quo *Quotient) error {
if args.B == 0 {
return errors.New("divide by zero")
}
quo.Quo = args.A / args.B
quo.Rem = args.A % args.B
return nil
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This go example from the gorpc page: http://golang.org/pkg/net/rpc/



Server Startup

arith := new(Arith)
rpc.Register (arith)
rpc.HandleHTTP ()

l, e := net.Listen("tcp",

if e !'= nil {

log.Fatal("listen error:",

}

go http.Serve(l, nil)

":1234")

e)
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Client Startup

client, err := rpc.DialHTTP("tcp", serverAddress + ":1234")
if err '= nil {
log.Fatal ("dialing:", err)

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 VI-72

Some content from David Andersen.




Client Call

// Synchronous call
args := &server.Args{7,8}
var reply int
err = client.Call("Arith.Multiply", args,
&reply)
if err '= nil {
log.Fatal ("arith error:", err)
}
fmt.Printf ("Arith: %d*%d=%d", args.A, args.B,
reply)
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Client Call

// Asynchronous call

quotient := new(Quotient)

divCall := client.Go("Arith.Divide", args,
quotient, nil)

replyCall := <-divCall.Done // will be equal to

divCall
// check errors, print, etc.
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RMI: a Remote Interface

package compute;

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface Compute extends Remote {

<T> T executeTask(Task<T> t) throws RemoteException;
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This example (extending through the next five slides) is taken from http://download.oracle.com/
javase/tutorial/rmi/overview.html (and the code is copyrighted by Oracle). The idea is that we are
designing a “compute server” to which we can send an object representing a computation to be
performed. The server performs the computation and sends back the result.

We start with a declaration of the server’s interface. By extending Remote, it becomes the
interface to a remote object, meaning that clients with references to the object can invoke its
methods remotely. Note that all methods of remote objects must be declared as throwing
RemoteException, which occurs when there is some sort of problem, such as a communication
error.

The interface provides one method, that takes a parameterized type, Task<T> as an argument,
and returns something of type T. Thus effectively the method has two parameters: Task<T> and T.



RMI: the Argument

package compute;

public interface Task<T> ({

T execute();
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Here is the declaration of Task<T>. Note that it is not a remote object, but will be passed (by
copying) to the Compute object.



RMI: the Server (1)

package engine;

import java.rmi.RemoteException;

import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;

import java.rmi.server.UnicastRemoteObject;
import compute.Compute;

import compute.Task;

public class ComputeEngine implements Compute {
public ComputeEngine() { super(); }
public <T> T executeTask (Task<T> t) {

return t.execute();
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Now that we've seen the declaration of the interface, we look at the server itself, whose code
begins on this slide. The class Compute Engine implements the Compute interface. Its constructor
simply calls upon the superclass constructor. Its executeTask method simply invokes the execute
method of the supplied Task<T> argument.



if

}
try

RMI: the Server (2)

public static void main(String[] args) {

(System.getSecurityManager () == null) {

System.setSecurityManager (new SecurityManager());

{
String name = "Compute";
Compute engine = new ComputeEngine () ;
Compute stub =

(Compute) UnicastRemoteObject.exportObject (engine, 0);
Registry registry = LocateRegistry.getRegistry();
registry.rebind (name, stub);

System.out.println ("ComputeEngine bound") ;

} catch (Exception e) {

System.err.println ("ComputeEngine exception:");

e.printStackTrace();
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The main routine, which is static, after setting up a security manager (which restricts what
remote invocations of the object can do) creates an instance of a ComputeEngine object and makes
access. The first step in this is to set things up so that the object can
The exportObject method of

it available for clients to

receive invocations of its method from remote clients.
UnicastRemoteObject does this: the first argument is the remote interface being offered to clients
and the second is the port on which to receive requests (0 means to use the default port).

Note that remote interfaces do not have constructors, thus clients must be given some external
means for getting references to remote objects. This is done here by putting the name of the object
in the local registry along with the reference to the remote object provided by exportObject. Thus

clients can contact the registry and get the reference associated with the name.




RMI: the Client

public class ComputePi {
public static void main(String args([]) {
if (System.getSecurityManager () == null) {
System.setSecurityManager (new SecurityManager());

try {
String name = "Compute";
Registry registry = LocateRegistry.getRegistry(args[0]);
Compute comp = (Compute) registry.lookup(name) ;
Pi task = new Pi(Integer.parselnt (args([l]));
BigDecimal pi = comp.executeTask (task);
System.out.println(pi);
} catch (Exception e) {
System.err.println ("ComputePi exception:");

e.printStackTrace();

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 VI-79

Some content from David Andersen.

Here we have code that’s run by clients. As with servers, a security manager must be set up to
enforce restrictions on what objects can do that are returned by servers. The client then gets the
object reference from the server’s registry (the name of the server is passed to the client code as an
argument). It then creates an instance of an object that represents a computation to be done (in
this case: compute the value of pi to a given number of digits). This object is passed to the remote
object as an argument and the result of the computation is returned.



RMI: the Client’s Compute
Object

package client;

import compute.Task;
import java.io.Serializable;

import java.math.BigDecimal;

public class Pi implements Task<BigDecimal>, Serializable ({
private final int digits;
public Pi(int digits) {this.digits = digits;} // constructor
// lots of stuff deleted ..
public BigDecimal execute() {
return computePi (digits);

}
// lots more stuff deleted ..
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Lastly we have the skeleton of the object that computes pi. Note that the object must implement
Serializable so that it can be marshalled and unmarshalled.



Other examples

* Grpc. Developed at Google
— Protocol Buffers as an IDL
—HTTP2 as a transport

— Many languages (C, C++, Java, Go, Node.js,
Python, Ruby, Objective-C, PHP and C#)

* Thrift.
— Developed at Facebook.

— Now Apache Open Source. Supports multiple
data encodings & transport mechanisms.
Even more languages.

* Avro. Also Apache standard. Created as part
of Hadoop project. Uses JSON. Not as
elaborate as Thrift.
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