
In this lecture we cover a number of networking issues pertinent to the support of distributed 
computing. Much of the material is covered in more detail in CS 168, and many slides are taken 
from there. This is the ‘168 in a lecture’ lecture. 



  



The first 7 are from Peter Deutsch, from Sun Microsystem, the eighth one by James Goslin, one 
of Java’s creators. The ones in italics are relevant to the lecture today. 

The article ‘Fallacies of Distributed Computing Explained’ expands on these, you can find it 
here: http://www.rgoarchitects.com/Files/fallacies.pdf 



By the definitions, Bandwidth >= Throughput >= Goodput. You can’t send faster than the 
(digital) bandwidth, and the throughput calculation takes into account any time in which you are 
not sending bytes (such as when waiting for acknowledgments in a stop-and-go protocol), or when 
you have to retransmit due to lost or corrupted bytes. Goodput counts a subset of the bytes you 
do get through, just the bytes that matter for your application.  

 
If your application needs a constant bitrate, then you have to mask jitter by adding buffering at 

the receiving end. Essentially, if the worst delay a bit can have is T, and the best t, then you have 
to have a buffer that accommodates BWx(T-t) bytes. 





How long does it take to send a frame across? 
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How fast can we receive bytes? 
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The International Organization for Standardization has devised a model for the design of 
communication protocols (known as the open systems interconnection (OSI) model). In this model 
each communicating entity has seven layers of protocol. The bottom layer (1) is known as the 
physical layer, and it essentially corresponds to the wire. The next layer (2) is known as the data 
link layer. It provides the means for putting data on the wire (and for taking it off). An example is 
Ethernet. The next layer (3) is known as the network layer. Its primary responsibility is to see that 
the data travels to the intended destination (perhaps via a number of intermediate points). The 
next layer is known as the transport layer. Its job is to see to it that the data, which is transferred 
between machines by the network layer, reaches the desired party at the destination machine. The 
notion of a “connection” is maintained by this layer. The next layer is known as the session layer. 
This layer doesn’t really do very much (if anything); it is responsible for maintaining the notion of 
a “session.” Sessions might be in one-to-one correspondence with transport connections; there 
might be two successive sessions on the same connection; or one session might span multiple 
connections (e.g., the first connection was terminated due to a communication failure, the session 
continues as soon as communication is reestablished). The next layer is known as the 
presentation layer. Its job is to deal with the fact that different machines have different 
representations for data (i.e. it must somehow translate between data representations) and to deal 
with such concerns as compression or encryption of data. Finally, the application layer is where 
all other software resides. However, it has been discovered that there is “system software” that 
logically fits above the presentation layer. The only place to put it is in the application layer, so 
“real” application software sits on top of the application layer. 

The bottom three layers are sometimes known as the communications subnet. If our data must 
pass through a number of machines on their way to the destination, each intermediate machine 
has an implementation of these lower layers to forward the data on. 



The OSI model is a classic example of something designed by committee. The model it describes 
does not fit exactly with the model of TCP/IP, but its terminology has become so commonplace 
that its exact requirements are conveniently stretched so that TCP/IP fits in. Originally it was 
thought (by the designers of the model) that protocols designed to fit in the OSI model would be 
not only competitors of TCP/IP, but would be replacing TCP/IP. The rumors of TCP/IP’s death 
were greatly exaggerated; one rarely hears about its competitors these days. 

Today one hears very little of the OSI protocols (though the OSI seven-layer terminology is much 
used); whatever competition there was between the OSI protocols and the internet protocols was 
definitely won by the latter. 

The protocols used on the Internet are, strangely enough, known as the Internet protocols (also 
known as TCP/IP). They don’t fit precisely into the OSI model (there is no analog of the session 
and presentation layers), but the rough correspondence is shown in the picture. 
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These are at best “guidelines”. 
It is interesting to note that the first and the second want to push functionality to higher layers, 

while the third wants to push functionality to lower layers. The Internet architecture, in contrast 
to the telephony network, and even to some other architectures that tried to provide too much in 
the lower layers, went radically to pushing functionality to higher layers. This is one of the great 
reasons of its success, as it lowered the barrier to entry and fostered innovation, as new 
functionality could be added at the higher layers without impacting other components at the same 
level. 

The paper ‘End-to-end Argument in System Design’ by Saltzer, Reed, and Clark is an 
EXCELLENT read on this topic. 



We will come back to this topic in the context of RPCs as well. 







In (a) you have the expected case in which the transmission and the acknowledgment succeed, 
all before the timeout. 

In (b) you have the case in which you NEED a retransmission, because the transmission failed. 
In (c) and (d) you wouldn’t need the retransmission, because the receiver got the packet, BUT 

THE SENDER CAN’T distinguish (c) from (b). 
In (d) the timeout value is exceeded, and a premature retransmission goes out. 
In these two latter cases, the receiver gets two copies of the transmission. 
In these cases, DOES THE RECEIVER KNOW WHETHER THE FRAME IS A NEW FRAME OR A 

RETRANSMISSION? 
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If you add a bit to the packets, in this protocol you can distinguish between a retransmission 
and a new transmission. 

















Conservation of packets: When a data pipeline is running at capacity, a new packet should be 
transmitted at one end for every packet received at the other.  

 
One might think of network connections as being like pipelines — they have finite and varying 

capacities. Data flows through pipelines and obeys Kirchoff’s current laws: the flows in must equal 
the flows out. Since acks are being generated for the packets being received, the sender simply 
transmits a new packet every time it receives an ack. 



The problem with the “ack clocking” approach is getting the pipeline to capacity (and 
determining when it’s there). Suppose a pipeline has a capacity of one gigabyte (capacity is 
bandwidth times the time it takes a packet to traverse the pipeline; this is known as the 
bandwidth-delay product). A naive (and fast) sender might start transmitting at its maximum 
speed, say 10 megabytes/second — since the pipeline is empty, it seems reasonable to fill it as 
quickly as possible. However, one or more downstream routers might be able to handle data at 
only 1 megabyte/second. Packets will start piling up at the first such router, which will soon start 
discarding them, forcing retransmissions by the sender. 



A better approach is the one called slow start: the sender starts transmitting slowly but speeds 
up until it fills the pipeline and is transmitting no faster than the pipeline can handle (as governed 
by ack clocking). 

More precisely, each sender maintains a congestion window. The amount of data the sender is 
allowed to transmit is the minimum of the sizes of the congestion and send windows. When 
transmitting data into an idle connection (i.e., an empty pipeline — one with no acks outstanding), 
the congestion window is set to one. Each time an ack is received, the congestion window size is 
increased by one. This results in exponential growth of the window size over time: after each 
roundtrip time, assuming no packets are lost, the window size doubles. 

Of course, we need to know when to stop this exponential growth; we take this up in the next 
pair of slides. 



Let’s assume that, somehow, we have found the capacity of the pipeline. Using ack clocking, we 
are maintaining an optimal data rate (line 1 of the slide). Suddenly, some additional connections 
are competing with us for bandwidth — congestion occurs and many of our packets are dropped 
(line 2 of the slide). 

In earlier versions of TCP, it was up to the router that dropped a packet to inform the sender 
that there is a problem. The sender was then to slow down. In practice, this approach failed 
miserably. A better approach, by Van Jacobson (see “Congestion Avoidance and Control”, 
Proceedings of SIGCOMM ’88) is for the sender to recognize that there is a problem as soon as 
one of its packets is not acknowledged. That a packet is lost might be due to its being 
corrupted, but the far most likely cause is that it was dropped by a router (due to congestion). The 
question is, how much to reduce the rate by? 

 
An unfortunate complication is that by the time the sender times out waiting for the dropped 

packet to be ack’d, the pipeline has emptied. Thus it must now use the slow-start approach to get 
the pipeline going again.  







Let’s assume that the sender has once again found the capacity of the pipeline and is 
transmitting according to ack clocking. Now (line 4), a connection that was using the pipeline 
drops out and there is surplus bandwidth. It’s important that our sender discover this so it can 
transmit at a faster rate. Since the parties that ceased to communicate are not going to announce 
this fact to others, our sender must discover it on its own. 

This discovery is implemented by having our sender gradually raise its transmission rate. It 
might do this exponentially, as in slow start, but this would quickly cause it to exceed the 
pipeline’s capacity and it would have to lower the rate by a factor of two. This would result in fairly 
wild oscillations. A better approach, suggestion in the previously cited paper by Jacobson and 
implemented in most TCP implementations, is to raise the transmission rate linearly, as opposed 
to exponentially. Thus the rate rises slowly until it’s too high and a packet is dropped, at which 
point it is again halved. The net effect is a slow oscillation around the optimal speed. 

To deal with both slow start and congestion control, we must remember that whenever we 
timeout on an ack, the pipeline is emptied. When this happens, the current value of the 
congestion window size is halved and stored in another per-connection variable, ssthresh (slow-
start threshold). The congestion window is then set to one and the slow-start, exponential growth 
approach (which isn’t all that slow) is used until the window size reaches ssthresh. At this point 
the transmission rate through the pipeline has reached half of what it was before and we turn off 
slow start and switch from exponential growth of the congestion window size to linear growth, as 
discussed in the previous paragraph. 





This is a simple model of two flows that adjust their rates synchronously and by the same 
policy. This also assumes that they detect congestion at the same time. The Efficient line is the 
line where the full rate of the bottleneck link is utilized, hence A+B = C. The region between this 
line and the origin is the feasible region, there will be congestion. The fair line is where the rates 
for the two flows are the same. We want the rates to converge to the intersection of these two lines, 
independent of the initial conditions.  

 
Why can’t we just adjust the rates so that we jump directly to the goal? Because the nodes, 

individually, can’t know what the goal is. This would imply that they knew exactly what the 
capacity was (they don’t), and they knew all the other participants, and their current demands 
(which they also have no way of knowing). The only signal they have here is whether they’ve 
experienced congestion. 



If the flows start at the top point, and multiplicatively decrease their rates, then they will scale 
the rate vector by a factor, going towards the origin on the dotted line. If they then increase their 
rates multiplicatively, they will go along the same line to the previous situation. This will not 
improve the fairness over time. Multiplicatively decreasing improves fairness (you get closer to the 
fair line) because the participant with the higher rate reduces more. The same doesn’t hold for the 
additive case. 



If instead they use additive decrease (i.e., by subtracting a constant amount every iteration) then 
they will move along a line parallel to the Fair line. Since the participant with the higher rate 
reduces by the same amount, fairness does not improve.  



If instead they use addidive increase (AI) and multiplicative decrease (MD), they will approach 
the goal point. This is the only set of simple adjustments that will achieve this goal. 



The additive increase is necessary so that nodes probe for new capacity available (maybe some 
flow just left!). If one looks at the window size over time for a node doing AIMD, it looks like the 
figure, in a characteristic sawtooth pattern. 







Suppose we’re using the computer at the bottom left of the slide. The nodes A through D are 
Ethernet hubs; Nodes U through Z are routers. If we want to send packets to other machines 
connected to hub A, no routing is required, since all machines are on the same subnet. However, 
we’ll need some means for determining the route to the machines connected to the other hubs. 
This routing information could be statically supplied, but, particularly if routers and connections 
might go down, we’re better off if the routing information can be determined dynamically. To 
communicate with machines served by ISP 1, all our machine needs to know is to send all traffic 
to router Z.  

This could be done by the use of a default route in our routing table. Similarly, traffic to all the 
other ISPs can be directed by simply sending traffic to Z. Within ISP 1 there must be information 
for routing to all networks served by it, including to the other ISPs. Note that since ISP 1 is 
connected to multiple other ISPs (and their networks) at multiple points, the “trick” of using a 
default route in its routers isn’t going to work; there must be some routers that know about the 
networks in the other ISPs. 



Routing domains are collections of systems. They exchange routing information with other 
domains. An exterior router (or gateway) is one that exchanges information with routers on other 
autonomous systems. Its availability and Internet routing tables for other exterior routers are the 
concern of the entire Internet. On the other hand, the interior routers are those IP nodes that are 
part of an autonomous system whose routing tables are only of concern to members of that IP 
network. Both interior and exterior routers have to provide their own routing information. In the 
case of the public Internet, the exterior routing protocol was EGP a number of years ago, but more 
recently border gateway protocol (BGP) has been adopted. Each autonomous system is free to 
choose its own interior routing (or gateway) protocol (IGP). 

Though RIP is still used as an IGP, OSPF and IS-IS (another link-state protocol) are used on the 
major autonomous systems. 



There are two basic approaches to maintaining routing information. The first, the distance-
vector approach, involves having neighboring routers periodically exchange their complete routing 
tables. When a router gets a neighbor’s table, it examines it to see if it contains better routes than 
what it has now and to check if existing routes that go through that neighbor have changed (or 
have been eliminated). 

The other approach, the link-state approach, has routers sending to all others only the state of 
their local connections, and then each router independently computes the shortest paths from it 
to all others. 

Both approaches have significant challenges when it comes to scaling. 





Does the order matter here? 
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Dynamic routing involves policy: something must determine the routes for packets to take, 
taking into account current conditions.  

 
Rather than use a single policy (and algorithm) for the Internet as a whole, the Internet is 

divided into autonomous systems (what, up to now, we’ve been calling domains), each of which 
does its own routing for internal traffic. Such an autonomous-system-specific routing algorithm is 
called an interior routing protocol. We, of course, must also worry about traffic between 
autonomous systems. This is dealt with by exterior routing protocols. 



Routing domains are collections of systems. They exchange routing information with other 
domains. An exterior router (or gateway) is one that exchanges information with routers on other 
autonomous systems. Its availability and Internet routing tables for other exterior routers are the 
concern of the entire Internet. On the other hand, the interior routers are those IP nodes that are 
part of an autonomous system whose routing tables are only of concern to members of that IP 
network. Both interior and exterior routers have to provide their own routing information. In the 
case of the public Internet, the exterior routing protocol was EGP a number of years ago, but more 
recently border gateway protocol (BGP) has been adopted. Each autonomous system is free to 
choose its own interior routing (or gateway) protocol (IGP). 

Though RIP is still used as an IGP, OSPF and IS-IS (another link-state protocol) are used on the 
major autonomous systems. 



The Internet is composed of a large number of autonomous systems with a fairly complicated set 
of connections. Given that we solved the routing problems within autonomous systems, how do we 
route across autonomous systems? It’s not going to be as simple (or as complicated) as finding the 
shortest possible path: we have to be concerned about a fair number of policy issues, such as 
which autonomous systems are allowed to carry the traffic of other autonomous systems. 



In an ideal world, the routing tables of exterior routers would contain one entry for each 
autonomous system (and no other entries). This would be possible if there were a well defined 
mapping from IP address to autonomous-system number. Unfortunately there isn’t. So, there 
must be a separate entry for each active class-A, -B, and -C address, as well as each CIDR prefix. 
The information on the current size of the tables are from http://www.telstra.net/ops. 



BGP (border gateway protocol) is the standard exterior routing protocol in use on the Internet, 
replacing EGP. A good description of the protocol is given in “BGP4: Inter-Domain Routing in the 
Internet,” John W. Stewart III, Addison-Wesley 1999. 





The first routing protocol we examine is routing information protocol, otherwise known as RIP. 
Although there are many limitations on what it can do, it has had widespread use, primarily 
because of its simplicity, though its use is dwindling. (It was originally designed to run on LSI-11 
computers, a very limited (in speed and memory) minicomputer built in the 1970s.) 



Being a distance-vector protocol, each RIP router periodically exchanges its routing table with its 
neighbors. The routing tables contain one entry for each destination, containing the cost of the 
best known path to that destination and the first hop (i.e., the neighboring router to send packets 
to) for that path. In the example of the slide, A is obtaining the route tables of B, C, and D. The 
costs of the connections between A and these nodes are marked on the edges between them. The 
table entries are triples indicating a path to the first component, of cost given by the second 
component, whose first hop is to the third component. 



A’s routing table is initialized to the shortest known paths according to information received 
from its neighbors. 



A sends its routing table to its neighbors, who modify theirs to account for routes through A. 



Besides learning about new routes, the table updates inform routers about the loss of routes. 
Consider the situation shown here, in which we are interested in routes to node D. 



The low-cost route from B to D suddenly vanishes. B must remove its route to D from its routing 
table. 



B gets a routing table update from A, which claims to have a route to D of cost 2 (it doesn’t 
realize that it goes through B …); so B updates its route to D to be a cost-3 route through A. 



A and C discover that there no longer is a low-cost route through B, but each sees the other’s 
cost-2 route to D through B, so they update their routing tables to get to D through each other via 
a cost-3 route. 



Nodes A, B, and C, after again exchanging routing tables, realize that the nodes through which 
their routes pass through are more expensive than the last time, so they update their routing 
tables accordingly. 



After this procedure is repeated a number of times, each node’s table now has a cost-10 route to 
D, at which point C’s direct connection (of cost 10) begins to look attractive. 



C now advertises its cost-10 route, which is adopted by the others. Things are now stable again. 



However, node C suddenly disappears ... 



A and B repeatedly exchange routing information; each wants to route to D via the other. 



Since there is no alternative, high-cost route to D, this repeated exchange of routing tables with 
corresponding increase in route cost never terminates (or, at least not until the route cost reaches 
infinity …). 



The only way out of this problem is to redefine infinity to be a small number (if only everything 
else was so easy …). 



One way to improve convergence is to use a technique known as split horizon (a technique used 
by RIP). It uses the common-sense principle that it’s not necessary to inform a neighbor about 
routes that the neighbor provided in the first place. Thus in our previous example, node A would 
not report to node B that it has a route to D, since it obtained that route from B itself. Thus B 
would discover quickly that it has no route to D. A, of course, must realize that when B reports no 
route to D, this means that the route that A previously had to D via B is now gone. 



However, even with split horizon we’re still not immune from the counting-to-infinity problem, as 
shown in the example in this and the next few slides. 



Here we augment our routing-table entries with a field indicating who supplied the route. 



  



  



  



An approach that actually prevents counting-to-infinity problems is the path-vector approach, in 
which nodes store the complete paths in the routing-table entries, not just the first hop. 



Here the link from C to D goes down. 



Nodes A and B discover that C no longer advertises a route to D. They might both try to route 
through the other to get to D. (For example, as soon as A discovers that C is down, it might route 
packets headed for D through B.) However, at the next exchange of routing information, A will see 
that B’s route goes through A, and vice versa. Since such routes would be infinite in length, they 
are quickly eliminated. 

Note that path vectors are not used in RIP, presumably because they would increase the size of 
routing tables by a fair amount. 



  





Here we have a simple network with each node’s routing table. 



Node C disappears. Nodes A and B send link-state messages to each other. 



On receipt of the link-state messages, nodes A and B quickly revise their routing tables. 





In link-state routing, each router computes the shortest path from itself to all other nodes using 
global information about the network. The slide shows a sample network, with the edges 
representing communication connections between computers, labeled with the cost of using that 
connection. 



In this and the next few slides, we use Dijkstra’s algorithm to compute the shortest path between 
A and each of the other computers in the network. 



We label each node with a pair indicating the cost of the best known path to that node (from A) 
and the name of the node just before this one on that path. A labeling is marked permanent if 
we’ve computed the cheapest path to that node, otherwise it is marked tentative (shown as a dark 
(red) node in the slide). We start with A and set its cost to zero. We take the tentative node with the 
lowest-cost path from A (A itself, initially), mark it as permanent, then examine the cost of 
extending this lowest-cost path to each node adjacent to it. I.e., we add to the path the cost of the 
connection to the adjacent node. If this new path is cheaper than the one already in place for the 
adjacent node, we change the node’s labeling to reflect the new, cheaper path. We continue this 
procedure until all nodes are permanent. 

Thus, in our example, we start with node A and modify the labels of nodes B and C. B now is the 
tentative node with the lowest cost, so we make it permanent and continue the process with its 
neighbors. 



D becomes the cheapest (or tied for cheapest) tentative node, so we continue by using it. 



We continue with C ... 



  



  



  



  



At this point we’ve done all but J, which we can mark as permanent as well. From the labels on 
each of the nodes, we can now find the shortest path to them from A. 



So that each node can compute the shortest path to all others, we need a means for nodes to 
propagate their link-state information to the others. This information is not just sent to a node’s 
neighbors, but flooded throughout an network: the source node sends a packet to each of its 
neighbors, which in turn send packets to each of their neighbors, etc. 



We’ve got to make certain that flooded information doesn’t circulate forever, but reaches each 
node no more than necessary. Thus a node doesn’t forward flooded information on the link it 
came on. It also doesn’t forward flooded information it’s already seen. For example, node D above 
receives two copies, but forwards only the first. 



Flooding isn’t as easy as it seems at first glance. This discussion is adapted from 
Interconnections, Second Edition, by Radia Perlman, Addison Wesley, 2000. 







The slide outlines an early approach used for flooding link-state updates on the ARPAnet. The 
“age” of an LSU is used to cope with the restart of a router: it starts with sequence numbers of 
zero. However, before it starts sending new LSUs, it waits long enough (90 seconds) so that all of 
the copies of its old LSUs on other routers have an age of zero. Thus all routers will accept the 
new LSUs. 



This slide (taken from Perlman, op. cit.) illustrates how comparison is done, taking wraparound 
into account. If the range of the sequence number is [0, n-1], then half of the range is greater than 
any particular value of a sequence number a and half is less than it. So, in particular, given any 
two sequence numbers a and b, if a < b and b-a < n/2, or a > b and a-b > n/2, then a is 
considered less than b. 



An unfortunate result of our rules for sequence-number comparison is that we can get 
something like what’s shown in the slide. Clearly, this “can’t happen” in practice—correctly 
functioning routers won’t produce consecutive LSUs with sequence numbers as shown in the 
slide. However, we have no guarantees that routers will always function correctly. One 
(malfunctioning) router on the ARPAnet actually did produce consecutive LSUs with sequence 
numbers as shown on the slide. The result was a complete collapse of the ARPAnet: a router 
holding an LSU with sequence number a received one with sequence number b, which it then 
forwarded (flooded to everyone). It then received an LSU with sequence number c, which, being 
more recent than the one with b, was again forwarded. At this point it received an LSU with 
sequence number a, resulting from its flood of the ARPAnet with that LSU. But now this appeared 
to be the most recent, so it forwarded (flooded) this one as well, ad infinitum. With all routers 
doing the same thing, all ARPAnet bandwidth was filled with these floods. (See Perlman, op. cit., 
for more details.) 

(Why didn’t ageing take care of things? The LSUs didn’t reside at each router long enough to be 
aged.) 



The solution is as sketched in the slide. In addition, further enhancements were made to use the 
bandwidth more efficiently. 



OSPF (open shortest path first; the “open” means that it’s an open, as opposed to a closed or 
proprietary protocol) is in widespread use on the internet. It is a link-state protocol, but has a 
number of additional features that add to its usefulness. 



  


