Peer to Peer 111

Building a Global Storage Service

CS 138 IV-1 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

Today

« How to build a global data storage utility
- Pooling resources from millions of devices that
- Are not trusted
- Come and go
- Are independent (no centralized management)
o Target
— 10'% users x 10* files of 10* bytes each = 10'® bytes

CS 138 V-2 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

What do we need if we want secure, durable, consistent, and efficient access to mutable files?

OceanStore

CS 138 1V-3 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights
reserved.

The slide is taken from “Maintenance-Free Global Data Storage,” by S. Rhea, C. Wells, P. Eaton,
D. Geels, B. Zhao, H. Weatherspoon, and J. Kubiatowicz, published in IEEE Internet Computing,
September-October 2001. Other OceanStore papers can be found at http://
oceanstore.cs.berkeley.edu/publications/index.html. It is also covered in the textbook starting on
page 422.

Goals

 Data lasts forever
« Data is tamper-proof and private
— subject to user-specified authorization

« Access is generally quick

CS 138 1V-4 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

Issues

What is the unit of replication
- File or block?
Finding a nearby copy
Updating all copies
- consistently
Access control
Integrity

Fault tolerance

CS 138

1V-5

Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca.

All rights
reserved.

OceanStore

« Infrastructure
- lots of administrative domains
- servers trusted in aggregate, but not individually
- arbitrary passive failures (crashes)
- arbitrary active failures

« really smart and malicious people and
computers out there ...

« all communication is subject to eavesdropping
and disruption

CS 138 IV-6 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

OceanStore

Designed and developed at Berkeley, early 2000’s

5 Key Techniques
- End-to-end encryption, self-certifying data
— Tapestry self-organizing routing infrastructure
— Erasure coding for durability (m-of-n)
- Byzantine update commitment
- Dynamic replica management

Great use of a DOLR (Tapestry)

Teaser for many other techniques we will see
throughout the semester

CS 138 V-7 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights
reserved.

Caveats

o It’s far more complex than PuddleStore!

« This presentation is based on a number of
OceanStore papers

- not everything is totally clear

CS 138 IV-8 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

Pond: the OceanStore Prototype, Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon,
Ben Zhao, and John Kubiatowicz. Appears in Proceedings of the 2nd USENIX Conference on File
and Storage Technologies (FAST '03), March 2003

File Format

Indirect Block

Data Block 1 Data Block 4
Data Block 2 Data Block 3
CS 138 IV-9 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

This and the next two slides are from the first lecture. They illustrate (roughly) the logical layout
of files in OceanStore. The actual file layout is a form of B-tree, but such details aren’t important
here.

Copy on Write (1)
Crtetn

Current
Version
y
Indirect Blgck Indlirect Blgck
Modified
Data Block 1 Data ck 4 Data Block 4
A
e Modified
Data Block 2 Data Block 3 Data Block 3
CS 138 IV-10 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

Copy on Write (2)
Current
Version
Indirect Blgck Indlirect Blgck
Modified
Data Block 1 Data ck 4 Data Block 4
A
/ Modified
Data Block 2 Data Block 3 Data Block 3
CS 138 IV-11 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. ~ All rights
reserved.

A file is a sequence of versions. One modifies a file by creating a new version. Blocks not
modified in creating a new version are shared with the old version. In principle, versions last
forever.

Questions

Where do the blocks go?
How are they referenced?

What if we can’t trust the computers that hold
them?

What if there are communication failures?

CS 138 IV-12 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights
reserved.

The Answer

» Tapestry
— blocks are identified by secure hashes of their contents
- contents may be encrypted if necessary
- multiple copies may be published for redundancy
o Self-certifying blocks
— What happens if the the block changes?

CS 138

IV-13 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fons,

eca. All rights

reserved.

OceanStore File
BGUID block secure hash of
GUID a block of data
VGUID version secure hash of
GUID the root block of
a version Current Version
Root Block [€ Root Block
v
Indlirect Bldck Indlirect Bldck Indlirect Bldck
Modified Data
Data Block 1 Data Block 4 Data Block 1 Data Block 4 Block 4
Modified Data
Data Block 2 Data Block 3 Data Block 2 Block 3
CS 138 1IV-14 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights
reserved.

GUID = globally unique identifier. Each link is a GUID. The intent is that GUIDs are published in
Tapestry.

How do you find a file

» Need to go from file name to a record
« Actually just the pointer to the latest version
— Only mutable record!

— Id is a hash of (file name, owner id)

Current
Version

E say

.

Modified

Data Block 1 Data Block 4

Modified

Data Block 2 Data Block 3

Data Block 3

CS 138 IV-15 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

Replication

« Example with 2 replicas
— N = total number of servers = 10

- M = number of servers expected to be down = 10°
(10%)

« What is the probability that at least one copy of a
replicated block is available?

L (G2
S (%)

CS 138 IV-16 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

« =0.99

Note that there are two copies of each block.

iis the number of unavailable copies

This is, for all possible numbers of unavailable copies that still allow reading,

the product of (# ways to arrange unavailable copies in unavailable servers) x (# of ways to
arrange available copies in available servers) / # of ways to arrange all copies on all servers

For this particular case, the formula would be simpler if you consider the complement case:
what is the probability that NO blocks are available? However, we use this formula as it is the
same as the one in the next slide.

This and the next two slides are based on material from “Erasure Coding vs. Replication: A
Quantitative Comparison,” by H. Weatherspoon and J. Kubiatowicz, published in Proceedings of
the First International Workshop on Peer-to-Peer Systems (IPTPS 2002), March 2002. A copy may be
found at http://oceanstore.cs.berkeley.edu/publications/papers/pdf/erasure_iptps.pdf.

Erasure Codes

+ Divide an object into m equal-size fragments and
code them as n equal-size fragments, n>m

- m/n = rate of encoding = r
- 1/r = multiplicative storage increase

« Original object can be reconstructed from any m out
of n fragments

— handles n-m “erasures”

CS 138 1IV-17 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

Benefits of Erasure Codes

N = total number of servers = 10°

M = number of servers expected to be down = 10°
e N= 32, m=16

What is the probability that at least m fragments of an
erasure-coded block is available?

’f(i)u:i)

(N)
i=0
=0.999999998 n

CS 138 IV-18 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights
reserved.

In Practice

Original block is stored in Tapestry by its BGUID

Erasure-coded fragments stored by id f(BGUID, k),
where k is the block number

Can be replicated at will

These are called archival copies

CS 138 IV-19 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights
reserved.

The Down Side ...

« Fetching and assembling the fragments is expensive
— how can it be made cheaper (on average)?

CS 138 IV-20 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

Caching

« If you’ve reconstructed a block
- publish it in tapestry
— available for others until you delete it

CS 138 IV-21 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

Where Are We?

« h(file name, owner id) -> AGUID -> VGUID ->
blocks...

« Blocks are widely replicated using erasure coding
- fragments form the archival copy of the file

 Caching takes place as file is accessed

CS 138 1V-22 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights
reserved.

Distributing a Mutable File

CS 138 1vV-23 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. ~ All righ:ls
reserved.

Here we pause to look at options for replicating a mutable file

Group Replication

« Updates at any
computer

« Collectively
determine effective
order

CS 138 1V-24 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All righ:ls
reserved.

With group replication, updates may be sent to any member of the group (where the group here
is all computers). This is convenient, except that getting all computers to agree on the order of
updates could be a problem. We will study approaches for doing this, but they don’t scale to
hundreds of thousands of computers.

Master Replication

« Updates just at one
computer

« It propagates them
to the others

CS 138 1IV-25 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All righ:ls
reserved.

With master replication, updates are sent just to one computer, which then propagates them to
all the others, determining the effective order. However, now the system has a bottleneck.

Issues

 Should we trust the server holding the primary
copy?
— should it be special?
- No!

CS 138 1V-26 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

Compromise

* Updates go to
master group

« It propagates them
to the others

CS 138 1vV-27 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All righ:ls
reserved.

With this approach, the order of updates is determined by the master group, which then
propagates them to the others.

Inner Ring

« A collection of servers are responsible for the
primary copy
— called the inner ring
+ Collectively make updates
— together they hold the primary replica
« File is identified by its active GUID (AGUID)

— secure hash of application-specific name and owner’s
public key
« Each inner-ring server publishes the AGUID in
Tapestry
— each holds a copy of the current VGUID

CS 138 1V-28 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights
reserved.

Replicated Primary Replica

Inner ring of
servers

YIS

NIy
v 1

! hRLLLLLL]

SNV
V [

PYIVEN

s

CS 138 IV-29 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All righ:ls
reserved.

The primary replica’s function is too important to be trusted to a single server. Thus all its
actions must be agreed upon by a set of servers known as the inner ring.

OceanStore File

BGUID block secure hash of
GUID a block of data
VGUID version secure hash of
GUID the root block of]
a version Current Version

AGUID active Effective name
GUID of file @

Root Block [€ Root Block
A
Indlirect Bidck Indlirect Bidck Indlirect Bidck
Modified Data
Data Block 1 Data Block 4 Data Block 1 Data Block 4 Block 4
Modified Data
Data Block 2 Data Block 3 Data Block 2 Block 3
CS 138 1IV-30 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

Copies of the current-version information are found via the file’s AGUID, which serves to identify
the file.

Byzantine Generals Problem

He said

e said
Attaeck!

CS 138

1V-31 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

The servers in a file’s inner ring must agree on all updates to the file, and hence must agree on
its current-version information. Getting agreement among a group of servers, some of which may
be (maliciously) faulty, is known as the Byzantine Generals Problem. We take this up in a later

lecture. However, we will see that it is solvable if more than two-thirds of the participants do what
they’re supposed to do.

BGUID block
GUID

VGUID version
GUID

AGUID active
GUID

Indlireq]

OceanStore File

secure hash of
a block of data

secure hash of
the root block of
a version

effective name

of file @

Root

Bloc}

Heartbeat Certificate

Bldck

/

Data Block 1

T

irect Blgck

Data Block 4

Data Block 1

Data Block 2

Data Block 3

Block

A

Iq

.

1

Data Block 4

Modified Data
Block 4

Data Block 2

Modified Data
Block 3

CS 138

1V-32

Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

The current-version information agreed upon by the inner ring is called the heartbeat and is
represented as a security certificate, signed by at least one more than two-thirds of the inner-ring
servers. As we will discuss in a later lecture, clients, upon getting a copy of such a certificate, can
verify that it really was signed by such super majority. In addition to the latest VGUID, the signed

heartbeat contains the AGUID, a timestamp, and a version sequence number.

Almost There. ...

« What about:
- getting notified about file updates?

- finding the AGUID in the first place?

CS 138 IV-33 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

Secondary Replicas

« May be stored on any server
» Hold copies of heartbeat
- new copies pushed to them by inner-ring servers

- new secondary replicas find and link to existing
ones via Tapestry

- forms tree of replicas

CS 138 1V-34 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

Where Are We?

« File update
— clients send update requests to primary replica

- inner-ring machines come to agreement on update
order

- commit changes to local copies
- propagate heartbeats to secondary replicas

- fragment new blocks and add to archival servers
using erasure code

CS 138 IV-35 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

Putting it all together: the Path of a
Wrrite

Archival Servers

(for durability)

You Primary Replicas Your friends

CS 138 IV-36 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

This slide taken from the original presentation of “Pond: the OceanStore Prototype”, Sean Rhea,
Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao, and John Kubiatowicz. Appears in
Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03), March

2003,

Where Are We?

o File read

- given a BGUID, block is found via Tapestry
- first look up BGUID

- if not found compute fragment GUIDs and look
them up

« verify results
« combine into block

- to find latest version of file, contact primary replica
(or, perhaps, secondary replica)

CS 138

1V-37 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca.

All rights
reserved.

What Else?

» Not described here
— all file blocks are encrypted by clients
— directories
— access control
+ Not implemented in Pond
- automatic repair
- periodic verification of data
- periodic copying of data to new disks
- introspection
- adaptive system management
» Not clear

- management of inner rings

CS 138

1V-38 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca.

All rights
reserved.

Performance

LAN WAN Predominant
operations in
Phase Linux NFS Pond Linux NFS Pond benchmark

1 0.0 1.9 0.9 2.8 Read and write

2 0.3 11.0 9.4 16.8 Read and write

3 1.1 1.8 8.3 1.8 Read [status only]
4 0.5 1.5 6.9 1.5 Read

5 2.6 215 32.0 Read and write
Total 4.5 37.2 47.0 54.9

CS 138 IV-39 Copyright © 2015 Thomas W. Doeppner and Rodrigo Fonseca. All rights

reserved.

Performance vs NFS

Writes dominated by cryptographic operations (group signing), erasure coding
This is a killer in the local area

Latency in the wide area hides most of this overhead

In conclusion, it is feasible!

This slide is taken from the textbook (Coulouris, Dollimore, and Kindberg, 4th edition) and shows
the performance of Pond vs. NFS. The text of the figure, also taken from the textbook, is: “The
figures show times in seconds to run different phases of the Andrew benchmark. It has five
phases: (1) creates subdirectories recursively; (2) copies a source tree; (3) examines the status of
all the files in the tree without examining their data; (4) examines every byte of data in all the files;
and (5) compiles and links the files.”

