
 CS 138 II–1 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Peer to Peer I

 CS 138 II–2 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Roadmap

•  This course will feature key concepts in Distributed
Systems, often illustrated by their use in example
systems

•  Start with Peer-to-Peer systems, which will be useful
for your projects

– Napster, Gnutella
– Chord (this class)
– Tapestry (next class)
– Use in filesystems

 CS 138 II–3 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

File Sharing

 CS 138 II–4 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Peer-to-Peer Systems

•  How did it start?
– A killer application: file distribution
– Free music over the Internet! (not exactly legal…)

•  Key idea: share storage, content, and bandwidth of
individual users

– Lots of them
•  Big challenge: coordinate all of these users

–  In a scalable way (not NxN!)
– With changing population (aka churn)
– With no central administration
– With no trust
– With large heterogeneity (content, storage, bandwidth,

…)

 CS 138 II–5 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

3 Key Requirements

•  P2P Systems do three things:
•  Help users determine what they want

–  Some form of search
– P2P version of Google

•  Locate that content
– Which node(s) hold the content?
– P2P version of DNS (map name to location)

•  Download the content
–  Should be efficient
– P2P form of Akamai

 CS 138 II–6 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Napster

 CS 138 II–7 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Napster Problems

 CS 138 II–8 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Gnutella

 CS 138 II–9 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Some Details

•  Participants interconnect via overlay network
•  To send a query:

–  send request to each directly connected node
– proceed for some maximum number of hops

-  node having desired file sends back its identity
• over reverse query route in original Gnutella
• direct via UDP in later Gnutella

-  querier chooses a source (if necessary)
-  sends it a push request

• transfer via HTTP

 CS 138 II–10 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

More Details

•  Joining the overlay network:
–  obtain addresses of some number of network nodes

-  wired into code
-  check web site
-  etc.

–  contact them; they produce address of other nodes
–  connect to n of them
–  keep others cached for later use

 CS 138 II–11 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Problems

•  Flaky network connections
•  Flaky computers
•  Flaky users

 CS 138 II–12 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Solution: Ultrapeers

 CS 138 II–13 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Lessons and Limitations
•  Client-server simple and effective

– But not always feasible
•  Things that flood-based systems do well

– Decentralization of visibility and liability
– Finding popular stuff
– Fancy local queries

•  Things that flood-based systems do poorly
–  Scale (exponential increase in traffic vs hops)
– Finding unpopular stuff
– Fancy distributed queries
– Vulnerabilities: data poisoning, tracking, etc.
– Guarantees about anything (answer quality, privacy, etc.)

 CS 138 II–14 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Second generation P2P

•  Structured P2P systems, mostly academic efforts
•  Goal: solve the scalable decentralized location

problem

 CS 138 II–15 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Distributed Hash Tables

hash(“metal heart”)

 CS 138 II–16 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Straw man: modulo hashing

•  Say you have N servers
•  Map requests to servers as follows:

– Number servers 0 to N-1
– Compute hash of content: h = hash (name)
– Redirect client to server #p = h mod N

•  Keep track of load in each proxy
–  If load on proxy #p is too high, try again with a different

hash function (or “salt”)
•  Problem: most caches will be useless if you add or

remove proxies, change value of N

 CS 138 II–17 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Consistent Hashing [Karger et al., 99]

•  Servers and objects mapped to points on a circle using hash
•  An object is assigned to its successor server
•  Minimizes data movement on change!

– Only O(1/N) objects moved on server leave/join
– Which ones?

A

B

C
0

1

2

3

4
Object Server

1 B

2 C

3 C

4 A

 CS 138 II–18 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Chord

•  Distributed hash tables meet overlay networks
– hash both keys and node IP addresses into identifiers

-  m-bit identifiers, where m is large enough so that
probability of collision is negligible

–  lookups resolved in O(log n) messages
–  adding or deleting a node requires O(log2 n) messages

 CS 138 II–19 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Chord

0
1

2

3

4
5

6

7

6

1

2

successor(1) = 1

successor(2) = 3 successor(6) = 0

 CS 138 II–20 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Search
S

 CS 138 II–21 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Speeding It Up

•  Find highest-numbered node that is smaller than
the key (modulo 2m)

–  the next node is the successor of the key
•  Finger table

–  contains pointers to nodes:
-  half-way around circle
-  ¼-way around circle
-  etc.

–  include with each node i an m-entry table
-  jth entry refers to the smallest-numbered node

that exceeds i by at least 2j-1 (modulo 2m)

 CS 138 II–22 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Finger table for S
Sm = 5

1: S+20

2: S+21

3: S+22

4: S+23

5: S+24=S+2m-1

 CS 138 II–23 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Search with Finger Table
S

 CS 138 II–24 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Finding an Object

n.find_successor(id) {
 n1 = find_predecessor(id)
 return n1.successor
}

n.find_predecessor(id) {
 n1 = n
 while (id ∉ (n1, n1.successor])
 n1 = n1.closest_preceding_finger(id)
 return n1
}

n.closest_preceding_finger(id) {
 for i = m downto 1
 if (finger[i].node ∈ (n, id))
 return finger[i].node
 return n
}

 CS 138 II–25 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Chord

0
1

2

3

4
5

6

7

j start interval node

1 1 [1, 2) 1
2 2 [2, 4) 3
3 4 [4, 0) 0
predecessor 3

j start interval node

1 2 [2,3) 3
2 3 [3,5) 3
3 5 [5, 1) 0
predecessor 0

j start interval node

1 4 [4,5) 0
2 5 [5,7) 0
3 7 [7,3) 0
predecessor 1

 CS 138 II–26 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Chord with Objects

0
1

2

3

4
5

6

7

j start interval node

1 1 [1, 2) 1
2 2 [2, 4) 3
3 4 [4, 0) 0
predecessor 3
objects 5, 7

j start interval node

1 2 [2,3) 3
2 3 [3,5) 3
3 5 [5, 1) 0
predecessor 0
objects 1

j start interval node

1 4 [4,5) 0
2 5 [5,7) 0
3 7 [7,3) 0
predecessor 1
objects 2

 CS 138 II–27 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Adding a Node

0
1

2

3

4
5

6

7

j start interval node

1 1 [1, 2) 1
2 2 [2, 4) 3
3 4 [4, 0) 0
predecessor 3
objects 5, 7

j start interval node

1 2 [2,3) 3
2 3 [3,5) 3
3 5 [5, 1) 0
predecessor 0
objects 1

j start interval node

1 4 [4,5) 0
2 5 [5,7) 0
3 7 [7,3) 0
predecessor 1
objects 2

j start interval node

1 7 [7, 0) ?
2 0 [0, 2) ?
3 2 [2, 6) ?
predecessor ?
objects

 CS 138 II–28 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Setting up the Finger Table

0
1

2

3

4
5

6

7

j start interval node

1 1 [1, 2) 1
2 2 [2, 4) 3
3 4 [4, 0) 0
predecessor 3
objects 5, 7

j start interval node

1 2 [2,3) 3
2 3 [3,5) 3
3 5 [5, 1) 0
predecessor 0
objects 1

j start interval node

1 4 [4,5) 0
2 5 [5,7) 0
3 7 [7,3) 0
predecessor 1
objects 2

j start interval node

1 7 [7, 0) 0
2 0 [0, 2) 0
3 2 [2, 6) 3
predecessor 3
objects

 CS 138 II–29 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Updating Others’ Tables

0
1

2

3

4
5

6

7

j start interval node

1 1 [1, 2) 1
2 2 [2, 4) 3
3 4 [4, 0) 6
predecessor 6
objects 5, 7

j start interval node

1 2 [2,3) 3
2 3 [3,5) 3
3 5 [5, 1) 6
predecessor 0
objects 1

j start interval node

1 4 [4,5) 6
2 5 [5,7) 6
3 7 [7,3) 0
predecessor 1
objects 2

j start interval node

1 7 [7, 0) 0
2 0 [0, 2) 0
3 2 [2, 6) 3
predecessor 3
objects

 CS 138 II–30 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Redistributing Objects

0
1

2

3

4
5

6

7

j start interval node

1 1 [1, 2) 1
2 2 [2, 4) 3
3 4 [4, 0) 6
predecessor 6
objects 7

j start interval node

1 2 [2,3) 3
2 3 [3,5) 3
3 5 [5, 1) 6
predecessor 0
objects 1

j start interval node

1 4 [4,5) 6
2 5 [5,7) 6
3 7 [7,3) 0
predecessor 1
objects 2

j start interval node

1 7 [7, 0) 0
2 0 [0, 2) 0
3 2 [2, 6) 3
predecessor 3
objects 5

 CS 138 II–31 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Adding a Node

adding node n
1)  Initialize n’s finger table

–  find some existing node p
 for i = 1 to m

 finger[i].node =
 p.find_successor(finger[i].start)

predecessor = finger[1].node.predecessor

 CS 138 II–32 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

An Improvement

j start interval node

1 7 [7, 0) 0
2 0 [0, 2) ?
3 2 [2, 6) ?
predecessor 3
objects

Node 6’s partially
filled-in finger table

There are no nodes in
this range …

… thus the node value
is the same as the one
above it (0).

 CS 138 II–33 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Adding a Node (Improved)

adding node n
1)  Initialize n’s finger table

–  find some existing node p
 finger[1].node =
 p.find_successor(finger[1].start)
 for i = 1 to m-1

 if (finger[i+1].start ∈ (n, finger[i].node])
 finger[i+1].node = finger[i].node
 else
 finger[i+1].node =
 p.find_successor(finger[i+1].start)

predecessor = finger[1].node.predecessor

 CS 138 II–34 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Adding a Node

2)  Update others’ finger tables
for i = 1 to m

 // find last node p whose ith finger might be new_node
 p = find_predecessor(new_node-2i-1)
 p.update_finger_table(new_node, i)

n.update_finger_table(s, i)

 if (s ∈ [n, finger[i].node))
 finger[i].node = s
 p = predecessor
 p.update_finger_table(s, i)

 CS 138 II–35 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Adding a Node

3)  Move objects in (predecessor, n] from the node
immediately following the new node

 CS 138 II–36 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Issues

•  What if a search takes place while a node is being
added?

•  What if multiple nodes are added concurrently?

 CS 138 II–37 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Invariants

•  Each node’s successor link is correct
•  For every key k, successor(k) is responsible for k

 CS 138 II–38 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Stabilization
n.join(p) //p is some node you know

predecessor = null
successor = p.find_successor(n)

// this is run periodically
// verify n’s successor, and tell n’s successor about n
n.stabilize()

x = successor.predecessor() //what is your
predecessor?

if (x is between n and successor)
successor = x

successor.notify(n)

n.notify(p) // “p to n: I think I am your predecessor”
if (predecessor == null or p is between predecessor
and n)
predecessor = p
transfer appropriate keys to predecessor

 CS 138 II–39 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Adding Node 6 via Stabilization (1)

0
1

2

3

4
5

6

7

successor: 1
predecessor: 3 successor: 3

predecessor: 0

successor: 0
predecessor: 1

 CS 138 II–40 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Adding Node 6 via Stabilization (2)

0
1

2

3

4
5

6

7

successor: 1
predecessor: 3 successor: 3

predecessor: 0

successor: 0
predecessor: 1

successor: 0
predecessor: null

join

 CS 138 II–41 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Adding Node 6 via Stabilization (3)

0
1

2

3

4
5

6

7

successor: 1
predecessor: 6

successor: 3
predecessor: 0

successor: 0
predecessor: 1

successor: 0
predecessor: null

stabilize

notify

 CS 138 II–42 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Adding Node 6 via Stabilization (4)

0
1

2

3

4
5

6

7

successor: 1
predecessor: 6 successor: 3

predecessor: 0

successor: 6
predecessor: 1

successor: 0
predecessor: 3

stabilize

notify

 CS 138 II–43 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Transferring Objects

•  When?
– not until new node is fully linked in
–  could be a race between a search and the transfer

•  What to do?
–  if search fails, search again after a delay

 CS 138 II–44 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Finger Tables?

•  If finger tables aren’t updated, is correctness
affected?

 CS 138 II–45 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Adding Nodes 6 and 4 via Stabilization

0
1

2

3

4
5

6

7

j start interval node

1 1 [1, 2) 1
2 2 [2, 4) 3
3 4 [4, 0) 0
predecessor 6
objects 7

j start interval node

1 2 [2,3) 3
2 3 [3,5) 3
3 5 [5, 1) 0
predecessor 0
objects 1

j start interval node

1 4 [4,5) 4
2 5 [5,7) 0
3 7 [7,3) 0
predecessor 1
objects 2

j start interval node

1 7 [7, 0) 0

2 0 [0, 2) -

3 2 [2, 6) -

predecessor 4

objects 5 j start interval node

1 7 [7, 0) 6

2 0 [0, 2) -

3 2 [2, 6) -

predecessor 3

objects

 CS 138 II–46 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Updating Finger Tables

// this is run periodically
n.fix_next_finger()

//i is initialized to 1 outside of the function
finger[i].node = find_successor(finger[i].start)
i++
if i > m – 1
 i = 1

 CS 138 II–47 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Failures
S

?

 CS 138 II–48 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

What to Do?

•  Each node keeps list of r nearest successors
–  if one does not respond, switch to next

•  Also replicate data at the r successors

 CS 138 II–49 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Failures
S

!

 CS 138 II–50 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

We didn’t cover

•  Detailed failed recovery
•  In 2012, using a formal model of Chord in Alloy,

Pamela Zave showed that Chord is not correct!
– E.g., multiple simultaneous joins can result in wrong

order
– Node leaving and then rejoining with the same id can

lead to node pointing at itself
– Has a version of the spec she claims correct

•  Very subtle bugs, took over 10 years to find, over
2000 citations, “Test of Time” award

•  If you are interested, take Logic for Systems, 1950-Y!

 CS 138 II–51 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

Next Class

•  Tapestry, another DHT
•  Chord assignment due 16th, Tuesday!

•  Make sure you have done:
– Collaboration policy
– Piazza
– Github

