




In the late 90’s two trends created the conditions for a new killer application for the Internet: 
music sharing. The two trends were the availability of broadband Internet, and the advent of good-
quality audio compression (mp3, 1:12).  







The Napster file sharing service features a central service at which providers of files register their 
locations and seekers of files find file locations. 



A central server is clearly a bottleneck. But we can replicate it locally, as we will see. The main 
problem, as was discovered by the providers of the original Napster, its presence makes it easy for 
legal action to be taken against the service. 



So a radically different approach appeared: a totally decentralized architecture. 



See the Wikipedia article (http://en.wikipedia.org/wiki/Gnutella) for a few more details. 







This architecture later led to Kazaa, and to Skype! 













A paper explaining Chord can be found at http://pdos.csail.mit.edu/papers/chord:sigcomm01/
chord_sigcomm.pdf. The hash function employed is SHA-1. The bounds on the number of 
messages are “with high probability.” 



The range of the hash function is organized as a circle. The red circles represent nodes 
(computers) whose hashed IP addresses are 0, 1, and 3. To simplify the discussion, we’ll ignore 
the hash function and refer to 0, 1, and 3 as being the nodes themselves rather than their hashed 
IP addresses. Similarly, we’ll refer to keys 0, 1, … 7 rather than saying that we have keys whose 
values hash to [0, 7]. Given this simplification, if i is a key, then successor(i) is the node where the 
key (and associated value) is stored. Things are organized so that key i is assigned to the lowest 
numbered node greater than or equal to i (modulo 2m). Thus successor(i) is the number of that 
node. 

If we store with each node i the address of successor(i), then, starting from any node, we can find 
the node containing any particular key (or definitively say the key is not present). Of course, doing 
this requires O(n) steps. 



Search requires a number of messages that is linear in the number of nodes — not good. 



Note that the numbering of finger-table entries starts with 1 (not 0)! 



With the addition of the finger table, search requires log(N) messages, where N is the number of 
nodes. 



With the addition of the finger table, search requires log(N) messages, where N is the number of 
nodes. 
1.  While not in id’s predecessor 
2.  Find last finger f < id 
3.  Recurse 



In this pseudo code (taken from the aforementioned paper), m.foo(x) means to place a remote 
procedure call to node m, executing procedure foo with argument x. m.x means to place a remote 
procedure call to node m, retrieving the value of variable x. 

The while loop in find_predecessor continues until n1 is the highest-numbered node less than id 
(modulo 2m), which will be the case when id is between n1 and the node that comes after it 
(n1.successor). 

The for loop in closest_preceding_finger finds the highest-numbered row in the finger table that 
refers to a node that comes before id. 



Here are the finger tables for our example. Each row represents the portion of the key space 
covered by the row (“finger”).  

Start: first key in the sequence of keys covered;  
Interval: entire sequence of keys covered;  
Node: node number of the first node whose number is greater than or equal to the value in the 

start column. 
 
Note that the node listed in the first row of each table is the next node in the ring. This is 

somewhat confusingly called the “successor node” (if x is a hashed key, then successor(x) might be 
x if node x exists; but successor(x) if x is a node is always the next node in the ring). It’s 
convenient to also list the predecessor node for each node; it’s given at the end of each table. 



Here we include in the finger tables the objects stored at each node. 



Adding a node requires both adjusting all the finger tables to accommodate the new node and 
moving the objects that should be stored at that node. 



First we set up the finger table of the new node. 



Next we modify the finger tables of previously existing nodes to accommodate the new node. 



Finally we redistribute the objects. 



Now for an algorithm. The first step is to set up the new node’s finger table. This step requires 
m⋅log(N) messages. 



Note that if there are no nodes within the interval covered by a row of the finger table we are 
constructing for a new node, then the node entry for the next row, i.e., the first node greater than 
or equal to the start of the interval, is the same as that of the current row. 



The improved version requires log2(N) messages. (Can you figure out why?) 



The code shown here requires O(log3(N)) messages. An algorithm requiring O(log2(N)) messages is 
possible, but we cover an entirely different approach instead. 



Note that the only objects that need to be moved are stored in the node immediately following 
the new node. 



Because of the difficult answers to these questions, we drop the approach we just looked at and 
try something different. 





For the moment, we ignore finger tables. This code provides the minimum necessary 
functionality so that the first invariant is preserved. A real implementation could be more 
aggressive. To make sense of this code, see the next few slides. 



Focusing just on the successor and predecessor links, we follow what happens when node 6 is 
added to the ring. 



Node 6 calls join to add itself. At this point, no other node knows of its existence. 



Node 6 now calls stabilize. Stabilize itself does nothing, but it calls notify on node 0 (6’s 
successor). Node 0 sets its predecessor to be 6. 



Node 3 now calls stabilize and discovers that its successor’s predecessor is not itself. So it sets 
its successor to 6 (its successor’s predecessor) and calls notify on node 6. Node 6 now sets its 
predecessor to be 3 — it’s now fully linked in. 







This slide shows the effect of adding nodes 6 and 4 in our earlier example by merely executing 
the stabilization code. 

 Note that the finger table is used to find the predecessor of the object’s successor. 
 Thus searches initiated at nodes 0 and 1 for object 5 will identify node 3 as the predecessor. 
 It’s then necessary to follow successor links until 5 is located at its successor, node 6. 











This can be seen here: http://www2.research.att.com/~pamela/chord.html 
 




