Peer to Peer 1

CS 138

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Roadmap

o This course will feature key concepts in Distributed
Systems, often illustrated by their use in example

systems

« Start with Peer-to-Peer systems, which will be useful

for your projects
- Napster, Gnutella
- Chord (this class)
— Tapestry (next class)

- Use in filesystems

CS 138

11-2

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

File Sharing

Copyright @ 2015 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

CS 138 1I-3

In the late 90’s two trends created the conditions for a new killer application for the Internet:
music sharing. The two trends were the availability of broadband Internet, and the advent of good-
quality audio compression (mp3, 1:12).

Peer-to-Peer Systems

« Howdid it start?
— A killer application: file distribution
— Free music over the Internet! (not exactly legal...)

« Key idea: share storage, content, and bandwidth of
individual users

— Lots of them
« Big challenge: coordinate all of these users
— In a scalable way (not NxN!)
- With changing population (aka churn)
- With no central administration

- With no trust
- With large heterogeneity (content, storage, bandwidth,
D -4 Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

All rights reserved.

3 Key Requirements

« P2P Systems do three things:

o Help users determine what they want
- Some form of search
— P2P version of Google

Locate that content
— Which node(s) hold the content?

— P2P version of DNS (map name to location)

o Download the content
— Should be efficient
— P2P form of Akamai

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 1I-5 s o
All rights reserved.

Napster

Copyright @ 2015 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

CS 138 11-6

The Napster file sharing service features a central service at which providers of files register their
locations and seekers of files find file locations.

Napster Problems

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

CS 138 11-7 All rights reserved.

A central server is clearly a bottleneck. But we can replicate it locally, as we will see. The main
problem, as was discovered by the providers of the original Napster, its presence makes it easy for
legal action to be taken against the service.

Gnutella

Copyright @ 2015 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

CS 138 11-8

So a radically different approach appeared: a totally decentralized architecture.

Some Details

« Participants interconnect via overlay network
» To send a query:
- send request to each directly connected node
— proceed for some maximum number of hops
- node having desired file sends back its identity
« over reverse query route in original Gnutella
o direct via UDP in later Gnutella
- querier chooses a source (if necessary)
- sends it a push request
« transfer via HTTP

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

CS 138 -
WED All rights reserved.

See the Wikipedia article (http://en.wikipedia.org/wiki/Gnutella) for a few more details.

More Details

+ Joining the overlay network:
- obtain addresses of some number of network nodes
- wired into code
- check web site
- etc.
- contact them; they produce address of other nodes
- connect to n of them

— keep others cached for later use

COP 'l'ighl © 2015 Thomas W. DUUPP"&'I’. Rl)d!ig(l Fonseca.
CS 138 1I-10 4
All rights reserved.

Problems

« Flaky network connections
+ Flaky computers
« Flaky users

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 II-11 o
All rights reserved.

Solution: Ultrapeers

Copyright @ 2015 Thomas W. Doeppner, Rodrigo Fonseca.

CS 138 11-12 All rights reserved.

This architecture later led to Kazaa, and to Skype!

Lessons and Limitations

o Client-server simple and effective
— But not always feasible
« Things that flood-based systems do well
— Decentralization of visibility and liability
- Finding popular stuff
— Fancy local queries
« Things that flood-based systems do poorly
— Scale (exponential increase in traffic vs hops)
- Finding unpopular stuff
- Fancy distributed queries
— Vulnerabilities: data poisoning, tracking, etc.

- Guarantees about anything (answer quality, privacy, etc.)

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 11-13 4
All rights reserved.

Second generation P2P

+ Structured P2P systems, mostly academic efforts

o Goal: solve the scalable decentralized location
problem

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

CS 138 1I-14

All rights reserved.

Distributed Hash Tables

F > g &

iy
hash(“metal heart”)

CS 138

1I-15

Straw man: modulo hashing

Say you have N servers
Map requests to servers as follows:

— Number servers 0 to N-1

- Compute hash of content: h = hash (name)

— Redirect client to server #p = h mod N

Keep track of load in each proxy

— If load on proxy #p is too high, try again with a different

hash function (or “salt”)

Problem: most caches will be useless if you add or

remove proxies, change value of N

CS 138

I1-16

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Consistent Hashing (xarger et al., 99]

./\

A
1 B
y 2 C
3 B 3 C
\ 4 A

« Servers and objects mapped to points on a circle using hash

« An object is assigned to its successor server

« Minimizes data movement on change!

- Only O(1/N) objects moved on server leave/join
— Which ones?

CS 138

Copyright @ 2015 Thomas W. Doeppner, Rodrigo Fonseca.

I1-17

All rights reserved.

Chord

« Distributed hash tables meet overlay networks
— hash both keys and node IP addresses into identifiers

- m-bit identifiers, where m is large enough so that
probability of collision is negligible
- lookups resolved in O(log n) messages
- adding or deleting a node requires O(log? n) messages

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 11-18 4
All rights reserved.

A paper explaining Chord can be found at http://pdos.csail.mit.edu/papers/chord:sigcommO1/
chord_sigcomm.pdf. The hash function employed is SHA-1. The bounds on the number of
messages are “with high probability.”

successor(1) = 1

successor(6) =0 successor(2) = 3

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 1I-19 pyrig] Pp! g

All rights reserved.

The range of the hash function is organized as a circle. The red circles represent nodes
(computers) whose hashed IP addresses are 0, 1, and 3. To simplify the discussion, we’ll ignore
the hash function and refer to 0, 1, and 3 as being the nodes themselves rather than their hashed
IP addresses. Similarly, we’ll refer to keys O, 1, ... 7 rather than saying that we have keys whose
values hash to [0, 7]. Given this simplification, if i is a key, then successor(i) is the node where the
key (and associated value) is stored. Things are organized so that key i is assigned to the lowest
numbered node greater than or equal to i (modulo 2™). Thus successor(i) is the number of that
node.

If we store with each node i the address of successor(i), then, starting from any node, we can find

the node containing any particular key (or definitively say the key is not present). Of course, doing
this requires O(n) steps.

Search

Copyright @ 2015 Thomas W. Doeppner, Rodrigo Fonseca.

CS 138 11-20 All rights reserved.

Search requires a number of messages that is linear in the number of nodes — not good.

Speeding It Up

+ Find highest-numbered node that is smaller than
the key (modulo 2™)

— the next node is the successor of the key
« Finger table
- contains pointers to nodes:
- half-way around circle
- Y-way around circle
- etc.
- include with each node i an m-entry table

- j" entry refers to the smallest-numbered node
that exceeds i by at least 21 (modulo 2™)

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 11-21 4
All rights reserved.

Note that the numbering of finger-table entries starts with 1 (not 0)!

Finger table for S
1:5+29
m=>5 =0 g 2: S+2!

4: S+23

Copyright @ 2015 Thomas W. Doeppner, Rodrigo Fonseca.

CS 138 11-22 All rights reserved.

With the addition of the finger table, search requires log(N) messages, where N is the number of
nodes.

Search with Finger Table

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 11-23 YE N
All rights reserved.

With the addition of the finger table, search requires log(N) messages, where N is the number of
nodes.

1. While not in id’s predecessor
2. Find last finger f < id
3. Recurse

Finding an Object

n.find successor (id) {
nl = find predecessor(id)
return nl.successor

}

n.find predecessor (id) {
nl = n
while (id & (nl, nl.successor])
nl = nl.closest_preceding_ finger (id)
return nl

}

n.closest_preceding_ finger(id) {
for i = m downto 1
if (finger[i].node € (n, id))
return finger[i] .node
return n

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 11-24 v
All rights reserved.

In this pseudo code (taken from the aforementioned paper), m.foo(x) means to place a remote
procedure call to node m, executing procedure foo with argument x. m.x means to place a remote
procedure call to node m, retrieving the value of variable x.

The while loop in find_predecessor continues until nl is the highest-numbered node less than id
(modulo 2m), which will be the case when id is between nl and the node that comes after it
(n1.successor).

The for loop in closest_preceding_finger finds the highest-numbered row in the finger table that
refers to a node that comes before id.

Chord
[j | start | interval | node | [j | start | interval | node |

T Bz 1 2 [23) 3

2 2 [2, 4) 3 2 3 [3,5) 3
3 4 4,00 0 3 5 5,1 0
predecessor 3 predecessor 0

j | start Linterval | node_

1 4 [4,5) 0
2 5 [5,7) 0
3 7 [7,3) 0
predecessor 1

COP yright © 2015 Thomas W. DUUPP"&'I’. Rodrigo Fonseca.
CS 138 11-25 s o
All rights reserved.

Here are the finger tables for our example. Each row represents the portion of the key space
covered by the row (“finger”).

Start: first key in the sequence of keys covered;

Interval: entire sequence of keys covered,;

Node: node number of the first node whose number is greater than or equal to the value in the

start column.

Note that the node listed in the first row of each table is the next node in the ring. This is
somewhat confusingly called the “successor node” (if x is a hashed key, then successor(x) might be
x if node x exists; but successor(x) if x is a node is always the next node in the ring). It’s
convenient to also list the predecessor node for each node; it’s given at the end of each table.

Chord with Objects

| j | start |interval | node |j | start Linterval | node |
1 1 M,2 1 1 2 [23) 3
2 2 [2, 4) 3 2 3 [3,5) 3
3 4 4,00 0 3 5 5,1 0
predecessor 3 0 predecessor 0
objects 5,7 7 1 objects 1

2

| j | start |interval | node

1 4 [4,5) 0
2 5 [5,7) 0
3 7 [7,3) 0
predecessor 1

objects 2

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 11-26
All rights reserved.

Here we include in the finger tables the objects stored at each node.

Adding a Node
[j | start |interval | node | j | start | interval | node |
1 1 [,2) 1 1 2 2,3) 3
2 2 2,4) 3 2 3 35 3
3 4 [4,0) 0 3 5 5,1 0
predecessor 3 0 predecessor 0
objects 5,7 7 1 objects 1

6 2
| j | start |interval | node | j | start | interval | node |
17 [7,0) 7 1 4 [4,5) 0
2 0 [02) 7 5 342 5 [57) 0
I 4 3 7 73 0
predecessor ? predecessor 1
objects objects 2

Adding a node requires both adjusting all the finger tables to accommodate the new node and
moving the objects that should be stored at that node.

Setting up the Finger Table

[j | start |interval | node | j | start | interval | node |
1 1 [,2) 1 1 2 2,3) 3
2 2 2,4) 3 2 3 35 3
3 4 [4,0) 0 3 5 5,1 0
predecessor 3 0 predecessor 0
objects 5,7 1 objects 1
6 2
| j | start |interval | node | j | start | interval | node |
N N I s 1 4 [45) 0
2 0 02 0 3.¢2 5 [57) O
NN R 4 3 7 73 0
predecessor 3 predecessor 1
objects - objects 2
Cs 138 L8 opyright © 2015 Ihomas W. Docppner, Rodrigo Fonseca,

All rights reserved.

First we set up the finger table of the new node.

Updating Others’ Tables

[| start | interva | node | [| stot |interval | nods
1 1 M2 1 1 2 [23) 3

2 3 [35)

2 2 [24) 3
3 5 51 @
0

3
3 4 [40 6
6

predecessor 0 predecessor
7 bjects 1
objects 5,7 1 objects
6 2
| j | start |interval | node |j | start | interval [node
2 0 [0, 2) 0 5 3 9 5 [5.7) 6
3 2 [2, 6) 3
4 3 7 @73 0

predecessor 3

. predecessor 1
objects :

cs138 1129 c objects 2

All rights reserved.

Next we modify the finger tables of previously existing nodes to accommodate the new node.

Redistributing Objects
|j | start linterval [node |j | start | interval | node |
1 1 [1,2) 1 1 2 [2,3) 3
2 2 [2, 4) 3 2 3 [3,5) 3
3 4 4,00 @ 3 5 51 6
predecessor 6 0 predecessor 0
. 7 1~ objects 1
objects 7

46 2
j | start linterval | node |j | start [interval | node
2 0 [0, 2) 0 5 3 9 - [5.7) 6
3 2 [2, 6) 3

4 3 7 [73) 0

predecessor 3
objects 5§ predecessor 1
cs 138 11-30 c objects 2 e

Finally we redistribute the objects.

Adding a Node

adding node n
1) Initialize n’s finger table
- find some existing node p
fori=1tom
finger[i].node =
p.-find_successor(finger[i].start)

predecessor = finger[1].node.predecessor

COP 'l'ighl © 2015 Thomas W. DUUPP"&'I’. Rl)d!ig(l Fonseca.
CS 138 11-31 4
All rights reserved.

Now for an algorithm. The first step is to set up the new node’s finger table. This step requires
m-log(N) messages.

An Improvement

There are no nodes in
this range ...

Node 6’s partially
filled-in finger table

n start interval m
1 7 0
2 0 [0, 2)
3 2 [2,6) ?

predecessor 3
] ... thus the node value
objects is the same as the one
above it (0).
Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
11-32 All rights reserved.

CS 138

Note that if there are no nodes within the interval covered by a row of the finger table we are
constructing for a new node, then the node entry for the next row, i.e., the first node greater than
or equal to the start of the interval, is the same as that of the current row.

Adding a Node (Improved)

adding node n
1) Initialize n’s finger table
- find some existing node p
finger[1].node =
p.find_successor(finger[1].start)
fori=1tom-1
if (finger[i+1].start € (n, finger[i].node])
finger[i+1].node = finger[i].node
else
finger[i+1].node =
p.find_successor(finger[i+1].start)

predecessor = finger[1].node.predecessor

CS 138

Copyright @ 2015 Thomas W. Doeppner, Rodrigo Fonseca.

I1-33

All rights reserved.

The improved version requires log?(N) messages. (Can you figure out why?)

Adding a Node

2) Update others’ finger tables
fori=1tom
// find last node p whose i finger might be new_node
p = find_predecessor(new_node-2i"!)
p.update_finger_table(new_node, i)

n.update_finger_table(s, i)
if (s € [n, finger[i].node))
finger[i].node = s
p = predecessor

p-update_finger_table(s, i)

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonsec:
All rights

CS 138 11-34

The code shown here requires O(log3(N)) messages. An algorithm requiring O(log?(N)) messages is
possible, but we cover an entirely different approach instead.

Adding a Node

3) Move objects in (predecessor, n] from the node
immediately following the new node

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

CS 138 -
II-35 All rights reserved.

Note that the only objects that need to be moved are stored in the node immediately following
the new node.

Issues

« What if a search takes place while a node is being
added?

« What if multiple nodes are added concurrently?

& \

CS 138 I1-36

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Because of the difficult answers to these questions, we drop the approach we just looked at and
try something different.

Invariants

« Each node’s successor link is correct
+ For every key k, successor(k) is responsible for k

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 11-37 ‘
All rights reserved.

Stabilization

n.join(p) //p is some node you know
predecessor = null
successor = p.find_successor (n)

// this is run periodically
// verify n’s successor, and tell n’s successor about n
n.stabilize()

x = successor.predecessor() //what is your
predecessor?

if (x is between n and successor)
successor = X
successor.notify (n)

n.notify(p) // “p to n: I think I am your predecessor”

if (predecessor == null or p is between predecessor
and n)

predecessor = p
transfer appropriate keys to predecessor

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 1I-38 pyrig] Pp! g

All rights reserved.

For the moment, we ignore finger tables. This code provides the minimum necessary
functionality so that the first invariant is preserved. A real implementation could be more
aggressive. To make sense of this code, see the next few slides.

Adding Node 6 via Stabilization (1)

successor: 1

predecessor: 3 successor: 3

predecessor: 0

successor: 0
predecessor: 1

Copyright @ 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 11-39 pyrigl PP/ '8¢

Focusing just on the successor and predecessor links, we follow what happens when node 6 is
added to the ring.

Adding Node 6 via Stabilization (2)

successor: 1

predecessor: 3 successor: 3

predecessor: 0

join
successor: 0
predecessor: null

successor: 0
predecessor: 1

Copyright @ 2015 Thomas W. Doeppner, Rodrigo Fonseca.

CS 138 11-40 All rights reserved.

Node 6 calls join to add itself. At this point, no other node knows of its existence.

Adding Node 6 via Stabilization (3)

notify

successor: 1
successor: 3

predecessor: 6 predecessor: 0

stabilize

successor: 0
predecessor: null

successor: 0
predecessor: 1

Copyright @ 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 11-41 pyrigl PP/ '8¢

Node 6 now calls stabilize. Stabilize itself does nothing, but it calls notify on node O (6’s
successor). Node O sets its predecessor to be 6.

Adding Node 6 via Stabilization (4)

successor: 1

predecessor: 6 successor: 3

predecessor: 0

notify
successor: 0
predecessor: 3

stabilize

successor: 6
predecessor: 1

Copyright @ 2015 Thomas W. Doeppner, Rodrigo Fonseca.

CS 138 11-42

All rights reserved.

Node 3 now calls stabilize and discovers that its successor’s predecessor is not itself. So it sets
its successor to 6 (its successor’s predecessor) and calls notify on node 6. Node 6 now sets its
predecessor to be 3 — it’s now fully linked in.

Transferring Objects

o When?

- not until new node is fully linked in

- could be a race between a search and the transfer
« What to do?

— if search fails, search again after a delay

CS 138

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

I1-43

All rights reserved.

Finger Tables?

« If finger tables aren’t updated, is correctness

affected?

CS 138

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

Adding Nodes 6 and 4 via Stabilization
j | start |interval | node | j | start Linterval | node_

1 1 M2 1 1 2 23 3

20 2 [za]| @ 2 3 [35 3

3 4 [4,0) 0 3 5 5,1 0

predecessor 6 0 predecessor 0
bject: 1

objects 7 7 1~ odects

i L Linora Lnodo PR 5
1 7 [7,0 0
: [j | start | interval | node

2 0 [02)

3 2 26 - 1 4 45 4

predecessor 4 3

objects 5 [j [start | interval | node 2 5 [57) O
1 7 [7,00 6
T g 4 3 7 [7,3) 0
3 2 (26 predecessor 1
predecessor 8 1 objects 2

Cs 138 objects I1-45) Allrights reserved.

This slide shows the effect of adding nodes 6 and 4 in our earlier example by merely executing

the stabilization code.
Note that the finger table is used to find the predecessor of the object’s successor.

Thus searches initiated at nodes O and 1 for object 5 will identify node 3 as the predecessor.
It’s then necessary to follow successor links until 5 is located at its successor, node 6.

Updating Finger Tables

// this is run periodically
n.fix next finger()
//i is initialized to 1 outside of the function
finger[i] .node = find successor(finger[i] .start)
i++
ifi>m-1
i=1

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.

CS 138 -
11-46 All rights reserved.

Failures

CS 138

11-47

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

What to Do?

« Each node keeps list of r nearest successors
- if one does not respond, switch to next

 Also replicate data at the r successors

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
CS 138 11-48
All rights reserved.

Failures

CS 138

11-49

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

We didn’t cover

Detailed failed recovery

In 2012, using a formal model of Chord in Alloy,
Pamela Zave showed that Chord is not correct!

- E.g., multiple simultaneous joins can result in wrong
order

- Node leaving and then rejoining with the same id can
lead to node pointing at itself

- Has a version of the spec she claims correct

Very subtle bugs, took over 10 years to find, over
2000 citations, “Test of Time” award

If you are interested, take Logic for Systems, 1950-Y!

CS 138

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
I1-50

All rights reserved.

This can be seen here: http:/ /www2.research.att.com/~pamela/chord.html

Next Class

» Tapestry, another DHT

« Chord assignment due 16th, Tuesday!

» Make sure you have done:

- Collaboration policy

- Piazza
— Github

CS 138

I1-51

Copyright © 2015 Thomas W. Doeppner, Rodrigo Fonseca.
All rights reserved.

