
 CS 138 I–1 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

CS 138: Distributed Computer
Systems

 CS 138 I–2 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Staff

•  Faculty
– Tom Doeppner
– Rodrigo Fonseca

•  Head TA
– Jordan Hendricks

•  Master’s TAs
– Junyang Chen
– Hongkai Sun
– Vivek Narayanan

•  UTA
– Jake Small

 CS 138 I–3 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Workload

•  Four programs (45%)
– Chord (5%)
– Tapestry (10%)
– Raft (10%)
– PuddleStore (20%)

•  Four written homeworks (15%)
•  One in-class midterm exam (15%)
•  Final exam (25%)
•  See http://www.cs.brown.edu/courses/csci1380/doc/syllabus.pdf

 CS 138 I–4 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Skills Needed

•  Ability to write and debug largish programs
with threads

– CS 32 or 33
•  Ability to prove a theorem

–  there won’t be many
– CS 22 is helpful

•  Willingness to learn a new programming
language

– Go

 CS 138 I–5 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Textbook

CA	
VA	

•  Circa	2007,	Facebook	decided	to	add	a	second	
datacenter	to	its	opera7ons	

Facebook	Database	Replica7on	

h<ps://www.facebook.com/notes/facebook-engineering/scaling-out/23844338919	

Why?	

•  Major	reason:	latency	
– can’t	go	faster	than	the	speed	of	light	yet	

•  Other	reasons	
– scale:	need	to	handle	rapidly	increasing	loads	
–  resiliency:	what	if	an	earthquake	hits	CA?	
– power:	some7mes	availability	of	power	limits	the	
size	of	a	datacenter!	

Caching	objects	

•  Facebook	handles	reads	via	memcached	

Caching	objects	

•  Cache	invalidated	on	a	new	write	

Adding	a	new	Datacenter	

•  Ini7al	design	had	a	bug	

Adding	a	new	Datacenter	

•  Stale	data	could	be	your	rela7onship	status,	or	
who	is	authorized	to	see	a	photo!	

 CS 138 I–12 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Grades Database

 CS 138 I–13 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Distributed Grades Database

 CS 138 I–14 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Failure

 CS 138 I–15 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Byzantine Failure

 CS 138 I–16 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Application Examples

•  Email
•  DNS
•  Content Distribution Networks

 CS 138 I–17 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Email: Ancient History

mail twd

 CS 138 I–18 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Enter UUCP: Distributed Email

mail brunix!twd

 CS 138 I–19 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

But …

mail brunix!rayssd!necntc!husc6!seismo!rick

 CS 138 I–20 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

On My 1989 Business Card …

{decvax,ihnp4}!brunix!twd

twd@cs.brown.edu

twd@browncs

 CS 138 I–21 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Domain Name System

•  The naming system for the Internet
– highly successful
– widely distributed administration
– good for long-lived, static information
– not extensible
– simple API

 CS 138 I–22 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Example

.

edu com net cn us

ucsb brown

cis cs

karla power

 CS 138 I–23 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Name Servers

.

edu com net cn us

ucsb brown

cis cs

karla power

ns1

NS: a.root-servers.net
 b.root-servers.net
 c.root-servers.net
 ...

NS: brown.edu
 dark.brown.edu
 ns1.ucsb.edu

NS: cs.brown.edu
 fullabull.cs.brown.edu
 brown.edu
 ns1.ucsb.edu

 CS 138 I–24 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Replicating Name Servers

•  One name server is the “primary”
•  Others are “secondaries”
•  Secondaries poll the primary for updates

–  information is tagged with a maximum lifetime
(typically one week!)

 CS 138 I–25 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Lookups

•  Order of search
1.  contact name server in local domain
2.  contact root name server and proceed downwards

•  Caching
–  results of recent queries are cached by name servers
–  local machine also caches recent lookups

•  Recursive vs. iterative
–  recursive queries are handled completely by

recipient
–  recipient sends referrals to sender of iterative

queries

 CS 138 I–26 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Lookups (Example)

.

edu com net cn us

ucsb brown

cis cs

karla power

ns1

NS: a.root-servers.net
 b.root-servers.net
 c.root-servers.net
 ...

NS: brown.edu
 dark.brown.edu
 ns1.ucsb.edu

acme

coyote
NS: cs.brown.edu

 fullabull.cs.brown.edu
 brown.edu
 ns1.ucsb.edu

 CS 138 I–27 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Resource Records

•  Form logical contents of each node
– a number of standard types, e.g.:

-  A: address of a machine
-  MX: mail exchanger
-  SOA: start of authority
-  PTR: pointer
-  NS: name server
-  CNAME: canonical name

– not easily extensible (everyone must agree to
changes)

 CS 138 I–28 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

MX Example

•  Mail is sent to “twd@karla.cs.brown.edu”
– mail-sending program queries DNS for an MX

record in karla.cs.brown.edu
–  the following info is returned:

karla.cs.brown.edu preference = 10,
mail exchanger = cs.brown.edu

cs.brown.edu nameserver = cs.brown.edu
cs.brown.edu internet address = 128.148.128.2

• mail is sent to cs.brown.edu
• a name server for that domain can be found

at cs.brown.edu
•  its internet address is 128.148.128.2

 CS 138 I–29 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Administration
$ORIGIN .
$TTL 86400 ; 1 day
cs.brown.edu IN SOA ns.cs.brown.edu. root.cs.brown.edu. (

 5870 ; serial
 10800 ; refresh (3 hours)
 3600 ; retry (1 hour)
 604800 ; expire (1 week)
 86400 ; minimum (1 day)
)
 NS dns.cs.brown.edu.
 NS ns1.ucsb.edu.
 NS knot.brown.edu.
 A 128.148.32.110
 MX 10 mx.cs.brown.edu.
 AFSDB 1 radio.cs.brown.edu.

$ORIGIN cs.brown.edu.
0a CNAME cslab0a
0b CNAME cslab0b
cslab0a A 128.148.31.190

 MX 10 mx
cslab0b A 128.148.33.106

 MX 10 mx
mx A 128.148.32.120

 CS 138 I–30 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Who Are You?

•  I’m 128.148.32.122

•  What’s that?

 CS 138 I–31 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Who Are You?

.

edu

brown

cs

salt

arpa

in-addr

128

148

32

122

 CS 138 I–32 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Who Are You?

.

edu

brown

cs

salt

arpa

in-addr

128

148

32

122

NS: a.root-servers.net
 b.root-servers.net
 c.root-servers.net
 ...

NS: chia.arin.net
 dill.arin.net
 ... NS: brown.edu

 dark.brown.edu
 ns1.ucsb.edu

NS: ns.cs.brown.edu
 dark.brown.edu
 ns1.ucsb.edu

 CS 138 I–33 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

More Administration
$ORIGIN .
$TTL 86400 ; 1 day
32.148.128.IN-ADDR.ARPA IN SOA ns.cs.brown.edu. root.cs.brown.edu. (

 5874 ; serial
 10800 ; refresh (3 hours)
 3600 ; retry (1 hour)
 604800 ; expire (1 week)
 86400 ; minimum (1 day)
)
 NS dns.cs.brown.edu.
 NS ns1.ucsb.edu.
 NS knot.brown.edu.

$ORIGIN 32.148.128.IN-ADDR.ARPA.
1 PTR fw-32.cs.brown.edu.
110 PTR list.cs.brown.edu.
111 PTR ftp.cs.brown.edu.
120 PTR mx.cs.brown.edu.
121 PTR dns.cs.brown.edu.
122 PTR salt.cs.brown.edu.

 CS 138 I–34 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Recap: Issues

•  Failure tolerance
•  Decentralized management
•  Speed vs. consistency

 CS 138 I–35 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

 CS 138 I–36 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

“Akamai's technology – at its core, applied
mathematics and algorithms – has transformed the
chaos of the Internet into a predictable, scalable, and
secure platform for business and entertainment. The
Akamai EdgePlatform comprises 73,000 servers
deployed in 70 countries that continually monitor the
Internet – traffic, trouble spots and overall conditions.
We use that information to intelligently optimize routes
and replicate content for faster, more reliable delivery.
As Akamai can handle up to 15-20% of Web traffic on
any given day, our view of the Internet is the most
comprehensive and dynamic collected anywhere.”

 CS 138 I–37 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The Internet

Content Delivery

nytimes.com

 CS 138 I–38 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The Internet

Content Delivery Network

nytimes.com

ISP
ISP

ISP

ISP

edge server
edge server

edge server

edge server

 CS 138 I–39 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

What Sort of Content?

•  Content aggregation
– portals, news aggregators, etc.

•  Static databases
– store locators, product catalogs, product

configurators
•  Data collection

– college applications, credit card applications,
polling sites

•  Two-way data exchange
– ad serving

•  All of the above

 CS 138 I–40 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

How Is It Done?

•  Smoke and mirrors (courtesy of DNS)
•  Example (much simplified)

–  resolve images.nytimes.com
– DNS returns a “CNAME”:

-  images.nytimes.com.g.akamai.net
–  this is resolved right to left
– akamai.net determines which akamai server is

closest to caller
–  resolves “g.akamai.net” to IP address of that

server

 CS 138 I–41 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Dynamic Content
Streaming Video

The Internet

nytimes.com

ISP
ISP

ISP

ISP

edge server
edge server

edge server

edge server

 CS 138 I–42 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Dynamic Content
Streaming Video

nytimes.com

ISP
ISP

ISP

ISP

edge server
edge server

edge server

edge server

set reflector
set reflector

set reflector

 CS 138 I–43 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Dynamic Content
Streaming Video

nytimes.com

edge server edge server edge server

edge server

set reflector
set reflector

set reflector

Region multicast

Introduction to Go

Where is Go used?

●  Google, of course!
●  Docker (Container management)
●  CloudFlare (Content Delivery Network)
●  Digital Ocean (VM hosting)
●  Dropbox (Cloud storage/file sharing)
●  … and many more!

Why use Go?

●  Easy concurrency w/ goroutines (green
threads)

●  Garbage collection and memory safety
●  Libraries provide easy RPC
●  Channels for communication between

goroutines

Example: Simple Program

package	main	
	
import	(

	"fmt"	
	"os"	

)	
	
func	main()	{	

	for	count	:=	1;	count	<	100;	count++	{	
	 	if	count%2	==	0	{	
	 	 	fmt.Printf("Found	even	number:	%v\n",	count)	
	 	}	else	{	
	 	 	fmt.Fprintf(os.Stderr,	"Not	an	even	number:	%v\n",	count)	
	 	}	
	}	

}	

●  No parentheses

●  “for { }” will loop forever

●  “for condition { }” avoids initialization/afterthought, similar to a while loop

Example: Concurrency

●  “go” keyword executes following function call in a separate goroutine
●  Goroutines don’t necessarily run in another OS thread
●  Refer to GOMAXPROCS in “runtime” package

package	main	
	
import	(

	"fmt"	
	"time"	

)	
	
func	main()	{	

	go	func()	{	
	 	time.Sleep(time.Second	*	5)	
	 	fmt.Printf("1")	
	}()	

	
	go	func()	{	
	 	fmt.Printf("2")	
	}()	

	
	time.Sleep(time.Second	*	10)	

}	

Example: Channels

●  The channels are buffered so the goroutines don’t wait on each other

package	main	
	
import	(

	"fmt"	
	"time"	

)	
	
func	message(send,	recv	chan	string,	str	string)	{	

	for	{	
	 	send	<-	str	
	 	s	:=	<-recv	
	 	fmt.Println(s)	
	}	

}	
	
func	main()	{	

	pingChan	:=	make(chan	string,	1)	
	pongChan	:=	make(chan	string,	1)	
	go	message(pongChan,	pingChan,	"ping")	
	go	message(pingChan,	pongChan,	"pong")	
	time.Sleep(time.Second)	

}	

Editing Go

●  Syntax highlighting and formatting:
o  Vim
o  Emacs
o  Sublime
o  Eclipse

●  Gotags for editors with ctags support
●  Links available at:

http://cs.brown.edu/courses/cs138/s15/syllabus.html

Tips

●  `go fmt’ - format source code
●  `godoc’ - view Go docs in localhost browser
●  `runtime/pprof’ - profiling package
●  `go test’ and `go tool cover’ - test

coverage
●  `goimports’ - add/remove imports as

needed

Learning Go

●  Project 0: Whatsup?
●  Effective Go
●  golang.org/doc
●  tour.golang.org

 CS 138 I–53 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

PuddleStore

•  A very distributed file system
–  thousands of computers

-  all over the world
•  (or at least throughout the SunLab)

-  no common administration
– each holds pieces of a few files

-  pieces replicated on many computers
•  Based on OceanStore

– and its Pond prototype

 CS 138 I–54 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

A File

Indirect Block

Data Block 1 Data Block 4

Data Block 2 Data Block 3

 CS 138 I–55 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

A Distributed File

Indirect Block

Data Block 1

Data Block 4

Data Block 2
Data Block 3

Indirect Block

Indirect Block

Indirect Block

Data Block 1

Data Block 1

Data Block 1

Data Block 2

Data Block 2

Data Block 2

Data Block 1

Data Block 1

Data Block 1

Data Block 1

Data Block 2

Data Block 2

Data Block 2

 CS 138 I–56 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Making It Work (sort of …)

•  Assign each block a unique n-bit ID
–  crypto hash of its contents

•  Assign each computer a unique n-bit ID
•  Store block at computer that has closest ID
•  Route requests for that block to that

computer

0x2a74ca56 0x9da6f453

0x529e02f8 0xd53b7621

Data Block 1
0x87a6df52

I want
Block 1

 CS 138 I–57 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Overlay Networks

 CS 138 I–58 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Chord

•  Distributed hash tables meet overlay
networks

– hash both keys and node IP addresses into
identifiers

-  m-bit identifiers, where m is large enough
so that probability of collision is negligible

–  lookups resolved in O(log n) messages
– adding or deleting a node requires O(log2 n)

messages
•  You implement it in the first programming

assignment

 CS 138 I–59 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Making It (really) Work (with high probability)

•  Assign each block a unique n-bit ID
–  crypto hash of its contents

•  Assign each computer a unique n-bit ID
•  Store multiple copies of blocks each at a number of computers
•  Store block addresses at computer that has closest ID

–  addresses are cached at other nodes
•  Route requests for that block to that computer

–  request is redirected to nearest computer that has copy of block

0x2a74ca56 0x9da6f453

0x529e02f8 0xd53b7621

Data Block 1
0x87a6df52

0x87a6df52 locations:
0x2a74ca56
0xd53b7621

Data Block 1
0x87a6df52

I want
Block 1

 CS 138 I–60 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Tapestry

•  Distributed object location and routing
(DOLR)

– you implement it in the second programming
assignment

 CS 138 I–61 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

More PuddleStore Issues

•  How are files named?
–  fileID = CryptoHash(file name)

•  How are files updated?
– carefully …

 CS 138 I–62 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Copy on Write (1)

Indirect Block

Data Block 1 Data Block 4

Data Block 2 Data Block 3

Version Node

fileID

Modified
Data Block 4

Indirect Block

Modified
Data Block 3

 CS 138 I–63 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Copy on Write (2)

Indirect Block

Data Block 1 Data Block 4

Data Block 2 Data Block 3

Version Node

fileID

Modified
Data Block 4

Indirect Block

Modified
Data Block 3

 CS 138 I–64 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

More Redundancy

Indirect Block

Data Block 1 Data Block 4

Data Block 2 Data Block 3

fileID

Modified
Data Block 4

Indirect Block

Modified
Data Block 3

Version Node

 CS 138 I–65 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Raft

•  Multiple clients update file concurrently
•  Each communicates with different servers

– servers propagate changes to all copies
•  How do we ensure that all copies are updated

in the same order?
– order matters ...

•  Raft
–  third programming assignment

 CS 138 I–66 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Final PuddleStore

•  You put all this together
– we give you the B design

-  if you implement it completely: you get a B
–  if you improve it (reasonably well): you get an A

(and it may count as a capstone)
-  you’re encouraged to discuss your design

with classmates

Top
Secret

