
 CS 138 I–1 Copyright © 2016 Thomas W. Doeppner. All rights reserved. 

CS 138: Distributed Computer 
Systems 
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Staff 

•  Faculty 
– Tom Doeppner 
– Rodrigo Fonseca 

•  Head TA 
– Jordan Hendricks 

•  Master’s TAs 
– Junyang Chen 
– Hongkai Sun 
– Vivek Narayanan 

•  UTA 
– Jake Small 



 CS 138 I–3 Copyright © 2016 Thomas W. Doeppner. All rights reserved. 

Workload 

•  Four programs (45%) 
– Chord (5%) 
– Tapestry (10%) 
– Raft (10%) 
– PuddleStore (20%) 

•  Four written homeworks (15%) 
•  One in-class midterm exam (15%) 
•  Final exam (25%) 
•  See http://www.cs.brown.edu/courses/csci1380/doc/syllabus.pdf 
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Skills Needed 

•  Ability to write and debug largish programs 
with threads 

– CS 32 or 33 
•  Ability to prove a theorem 

–  there won’t be many 
– CS 22 is helpful 

•  Willingness to learn a new programming 
language 

– Go 
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Textbook 



CA	
VA	

•  Circa	2007,	Facebook	decided	to	add	a	second	
datacenter	to	its	opera7ons	

Facebook	Database	Replica7on	

h<ps://www.facebook.com/notes/facebook-engineering/scaling-out/23844338919	



Why?	

•  Major	reason:	latency	
– can’t	go	faster	than	the	speed	of	light	yet	

•  Other	reasons	
– scale:	need	to	handle	rapidly	increasing	loads	
–  resiliency:	what	if	an	earthquake	hits	CA?	
– power:	some7mes	availability	of	power	limits	the	
size	of	a	datacenter!	



Caching	objects	

•  Facebook	handles	reads	via	memcached	



Caching	objects	

•  Cache	invalidated	on	a	new	write	



Adding	a	new	Datacenter	

•  Ini7al	design	had	a	bug	



Adding	a	new	Datacenter	

•  Stale	data	could	be	your	rela7onship	status,	or	
who	is	authorized	to	see	a	photo!	
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Grades Database 
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Distributed Grades Database 
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Failure 
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Byzantine Failure 
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Application Examples 

•  Email 
•  DNS 
•  Content Distribution Networks 
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Email: Ancient History 

mail twd 
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Enter UUCP: Distributed Email 

mail brunix!twd 
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But … 

mail brunix!rayssd!necntc!husc6!seismo!rick 
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On My 1989 Business Card … 

{decvax,ihnp4}!brunix!twd 

twd@cs.brown.edu 

twd@browncs 
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Domain Name System 

•  The naming system for the Internet 
– highly successful 
– widely distributed administration 
– good for long-lived, static information 
– not extensible 
– simple API 
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Example 

. 

edu com net cn us 

ucsb brown 

cis cs 

karla power 
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Name Servers 

. 

edu com net cn us 

ucsb brown 

cis cs 

karla power 

ns1 

NS: a.root-servers.net 
 b.root-servers.net 
 c.root-servers.net 
 ... 

NS: brown.edu 
 dark.brown.edu 
 ns1.ucsb.edu 

NS: cs.brown.edu 
 fullabull.cs.brown.edu 
 brown.edu 
 ns1.ucsb.edu 
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Replicating Name Servers 

•  One name server is the “primary” 
•  Others are “secondaries” 
•  Secondaries poll the primary for updates 

–  information is tagged with a maximum lifetime 
(typically one week!) 
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Lookups 

•  Order of search 
1.  contact name server in local domain 
2.  contact root name server and proceed downwards 

•  Caching 
–  results of recent queries are cached by name servers 
–  local machine also caches recent lookups 

•  Recursive vs. iterative 
–  recursive queries are handled completely by 

recipient 
–  recipient sends referrals to sender of iterative 

queries 
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Lookups (Example) 

. 

edu com net cn us 

ucsb brown 

cis cs 

karla power 

ns1 

NS: a.root-servers.net 
 b.root-servers.net 
 c.root-servers.net 
 ... 

NS: brown.edu 
 dark.brown.edu 
 ns1.ucsb.edu 

acme 

coyote 
NS: cs.brown.edu 

 fullabull.cs.brown.edu 
 brown.edu 
 ns1.ucsb.edu 
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Resource Records 

•  Form logical contents of each node 
– a number of standard types, e.g.: 

-  A: address of a machine 
-  MX: mail exchanger 
-  SOA: start of authority 
-  PTR: pointer 
-  NS: name server 
-  CNAME: canonical name 

– not easily extensible (everyone must agree to 
changes) 
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MX Example 

•  Mail is sent to “twd@karla.cs.brown.edu” 
– mail-sending program queries DNS for an MX 

record in karla.cs.brown.edu 
–  the following info is returned: 

karla.cs.brown.edu   preference = 10, 
mail exchanger = cs.brown.edu 

cs.brown.edu  nameserver = cs.brown.edu 
cs.brown.edu  internet address = 128.148.128.2 

• mail is sent to cs.brown.edu 
• a name server for that domain can be found 

at cs.brown.edu 
•  its internet address is 128.148.128.2 
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Administration 
$ORIGIN . 
$TTL 86400  ; 1 day 
cs.brown.edu   IN SOA  ns.cs.brown.edu. root.cs.brown.edu. ( 

    5870       ; serial 
    10800      ; refresh (3 hours) 
    3600       ; retry (1 hour) 
    604800     ; expire (1 week) 
    86400      ; minimum (1 day) 
    ) 
   NS  dns.cs.brown.edu. 
   NS  ns1.ucsb.edu. 
   NS  knot.brown.edu. 
   A  128.148.32.110 
   MX  10 mx.cs.brown.edu. 
   AFSDB  1 radio.cs.brown.edu. 

$ORIGIN cs.brown.edu. 
0a   CNAME  cslab0a 
0b   CNAME  cslab0b 
cslab0a   A  128.148.31.190 

   MX  10 mx 
cslab0b   A  128.148.33.106 

   MX  10 mx 
mx   A  128.148.32.120 
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Who Are You? 

•  I’m 128.148.32.122 

•  What’s that? 
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Who Are You? 

. 

edu 

brown 

cs 

salt 

arpa 

in-addr 

128 

148 

32 

122 
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Who Are You? 

. 

edu 

brown 

cs 

salt 

arpa 

in-addr 

128 

148 

32 

122 

NS: a.root-servers.net 
 b.root-servers.net 
 c.root-servers.net 
 ... 

NS: chia.arin.net  
 dill.arin.net 
 ... NS: brown.edu 

 dark.brown.edu 
 ns1.ucsb.edu 

NS: ns.cs.brown.edu 
 dark.brown.edu 
 ns1.ucsb.edu 



 CS 138 I–33 Copyright © 2016 Thomas W. Doeppner. All rights reserved. 

More Administration 
$ORIGIN . 
$TTL 86400  ; 1 day 
32.148.128.IN-ADDR.ARPA  IN SOA  ns.cs.brown.edu. root.cs.brown.edu. ( 

    5874       ; serial 
    10800      ; refresh (3 hours) 
    3600       ; retry (1 hour) 
    604800     ; expire (1 week) 
    86400      ; minimum (1 day) 
    ) 
   NS  dns.cs.brown.edu. 
   NS  ns1.ucsb.edu. 
   NS  knot.brown.edu. 

$ORIGIN 32.148.128.IN-ADDR.ARPA. 
1    PTR  fw-32.cs.brown.edu. 
110    PTR  list.cs.brown.edu. 
111    PTR  ftp.cs.brown.edu. 
120    PTR  mx.cs.brown.edu. 
121    PTR  dns.cs.brown.edu. 
122    PTR  salt.cs.brown.edu. 



 CS 138 I–34 Copyright © 2016 Thomas W. Doeppner. All rights reserved. 

Recap: Issues 

•  Failure tolerance 
•  Decentralized management 
•  Speed vs. consistency 
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“Akamai's technology – at its core, applied 
mathematics and algorithms – has transformed the 
chaos of the Internet into a predictable, scalable, and 
secure platform for business and entertainment. The 
Akamai EdgePlatform comprises 73,000 servers 
deployed in 70 countries that continually monitor the 
Internet – traffic, trouble spots and overall conditions. 
We use that information to intelligently optimize routes 
and replicate content for faster, more reliable delivery. 
As Akamai can handle up to 15-20% of Web traffic on 
any given day, our view of the Internet is the most 
comprehensive and dynamic collected anywhere.” 
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The Internet 

Content Delivery 

nytimes.com 
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The Internet 

Content Delivery Network 

nytimes.com 

ISP 
ISP 

ISP 

ISP 

edge server 
edge server 

edge server 

edge server 
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What Sort of Content? 

•  Content aggregation 
– portals, news aggregators, etc. 

•  Static databases 
– store locators, product catalogs, product 

configurators 
•  Data collection 

– college applications, credit card applications, 
polling sites 

•  Two-way data exchange 
– ad serving 

•  All of the above 
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How Is It Done? 

•  Smoke and mirrors (courtesy of DNS) 
•  Example (much simplified) 

–  resolve images.nytimes.com 
– DNS returns a “CNAME”: 

-  images.nytimes.com.g.akamai.net 
–  this is resolved right to left 
– akamai.net determines which akamai server is 

closest to caller 
–  resolves “g.akamai.net” to IP address of that 

server 
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Dynamic Content 
Streaming Video 

The Internet 

nytimes.com 

ISP 
ISP 

ISP 

ISP 

edge server 
edge server 

edge server 

edge server 
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Dynamic Content 
Streaming Video 

nytimes.com 

ISP 
ISP 

ISP 

ISP 

edge server 
edge server 

edge server 

edge server 

set reflector 
set reflector 

set reflector 
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Dynamic Content 
Streaming Video 

nytimes.com 

edge server edge server edge server 

edge server 

set reflector 
set reflector 

set reflector 

Region multicast 



Introduction to Go 



Where is Go used? 

●  Google, of course! 
●  Docker (Container management) 
●  CloudFlare (Content Delivery Network) 
●  Digital Ocean (VM hosting) 
●  Dropbox (Cloud storage/file sharing) 
●  … and many more! 



Why use Go? 

●  Easy concurrency w/ goroutines (green 
threads) 

●  Garbage collection and memory safety 
●  Libraries provide easy RPC 
●  Channels for communication between 

goroutines 



Example: Simple Program 

package	main	
	
import	(	

	"fmt"	
	"os"	

)	
	
func	main()	{	

	for	count	:=	1;	count	<	100;	count++	{	
	 	if	count%2	==	0	{	
	 	 	fmt.Printf("Found	even	number:	%v\n",	count)	
	 	}	else	{	
	 	 	fmt.Fprintf(os.Stderr,	"Not	an	even	number:	%v\n",	count)	
	 	}	
	}	

}	

●  No parentheses 

●  “for { }” will loop forever 

●  “for condition { }” avoids initialization/afterthought, similar to a while loop 



Example: Concurrency 

●  “go” keyword executes following function call in a separate goroutine 
●  Goroutines don’t necessarily run in another OS thread 
●  Refer to GOMAXPROCS in “runtime” package 

package	main	
	
import	(	

	"fmt"	
	"time"	

)	
	
func	main()	{	

	go	func()	{	
	 	time.Sleep(time.Second	*	5)	
	 	fmt.Printf("1")	
	}()	

	
	go	func()	{	
	 	fmt.Printf("2")	
	}()	

	
	time.Sleep(time.Second	*	10)	

}	



Example: Channels 

●  The channels are buffered so the goroutines don’t wait on each other 

package	main	
	
import	(	

	"fmt"	
	"time"	

)	
	
func	message(send,	recv	chan	string,	str	string)	{	

	for	{	
	 	send	<-	str	
	 	s	:=	<-recv	
	 	fmt.Println(s)	
	}	

}	
	
func	main()	{	

	pingChan	:=	make(chan	string,	1)	
	pongChan	:=	make(chan	string,	1)	
	go	message(pongChan,	pingChan,	"ping")	
	go	message(pingChan,	pongChan,	"pong")	
	time.Sleep(time.Second)	

}	



Editing Go 

●  Syntax highlighting and formatting: 
o  Vim 
o  Emacs 
o  Sublime 
o  Eclipse 

●  Gotags for editors with ctags support 
●  Links available at: 

http://cs.brown.edu/courses/cs138/s15/syllabus.html 



Tips 

●  `go fmt’ - format source code 
●  `godoc’ - view Go docs in localhost browser 
●  `runtime/pprof’ - profiling package 
●  `go test’ and `go tool cover’ - test 

coverage 
●  `goimports’ - add/remove imports as 

needed 



Learning Go 

●  Project 0: Whatsup? 
●  Effective Go 
●  golang.org/doc 
●  tour.golang.org 
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PuddleStore 

•  A very distributed file system 
–  thousands of computers 

-  all over the world 
•  (or at least throughout the SunLab) 

-  no common administration 
– each holds pieces of a few files 

-  pieces replicated on many computers 
•  Based on OceanStore 

– and its Pond prototype 
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A File 

Indirect Block 

Data Block 1 Data Block 4 

Data Block 2 Data Block 3 
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A Distributed File 

Indirect Block 

Data Block 1 

Data Block 4 

Data Block 2 
Data Block 3 

Indirect Block 

Indirect Block 

Indirect Block 

Data Block 1 

Data Block 1 

Data Block 1 

Data Block 2 

Data Block 2 

Data Block 2 

Data Block 1 

Data Block 1 

Data Block 1 

Data Block 1 

Data Block 2 

Data Block 2 

Data Block 2 
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Making It Work (sort of …) 

•  Assign each block a unique n-bit ID 
–  crypto hash of its contents 

•  Assign each computer a unique n-bit ID 
•  Store block at computer that has closest ID 
•  Route requests for that block to that 

computer 

0x2a74ca56 0x9da6f453 

0x529e02f8 0xd53b7621 

Data Block 1 
0x87a6df52 

I want 
Block 1 
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Overlay Networks 
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Chord 

•  Distributed hash tables meet overlay 
networks 

– hash both keys and node IP addresses into 
identifiers 

-  m-bit identifiers, where m is large enough 
so that probability of collision is negligible 

–  lookups resolved in O(log n) messages 
– adding or deleting a node requires O(log2 n) 

messages 
•  You implement it in the first programming 

assignment 
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Making It (really) Work (with high probability) 

•  Assign each block a unique n-bit ID 
–  crypto hash of its contents 

•  Assign each computer a unique n-bit ID 
•  Store multiple copies of blocks each at a number of computers 
•  Store block addresses at computer that has closest ID 

–  addresses are cached at other nodes 
•  Route requests for that block to that computer 

–  request is redirected to nearest computer that has copy of block 

0x2a74ca56 0x9da6f453 

0x529e02f8 0xd53b7621 

Data Block 1 
0x87a6df52 

0x87a6df52 locations: 
0x2a74ca56 
0xd53b7621 

Data Block 1 
0x87a6df52 

I want 
Block 1 
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Tapestry 

•  Distributed object location and routing 
(DOLR) 

– you implement it in the second programming 
assignment 
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More PuddleStore Issues 

•  How are files named? 
–  fileID = CryptoHash(file name) 

•  How are files updated? 
– carefully … 
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Copy on Write (1) 

Indirect Block 

Data Block 1 Data Block 4 

Data Block 2 Data Block 3 

Version Node 

fileID 

Modified 
Data Block 4 

Indirect Block 

Modified 
Data Block 3 
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Copy on Write (2) 

Indirect Block 

Data Block 1 Data Block 4 

Data Block 2 Data Block 3 

Version Node 

fileID 

Modified 
Data Block 4 

Indirect Block 

Modified 
Data Block 3 
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More Redundancy 

Indirect Block 

Data Block 1 Data Block 4 

Data Block 2 Data Block 3 

fileID 

Modified 
Data Block 4 

Indirect Block 

Modified 
Data Block 3 

Version Node 
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Raft 

•  Multiple clients update file concurrently 
•  Each communicates with different servers 

– servers propagate changes to all copies 
•  How do we ensure that all copies are updated 

in the same order? 
– order matters ... 

•  Raft 
–  third programming assignment 
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Final PuddleStore 

•  You put all this together 
– we give you the B design 

-  if you implement it completely: you get a B 
–  if you improve it (reasonably well): you get an A 

(and it may count as a capstone) 
-  you’re encouraged to discuss your design 

with classmates 

Top 
Secret 


