CS 138: Distributed Computer
Systems

CS 138

-1 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Staff

Faculty

— Tom Doeppner

— Rodrigo Fonseca
Head TA

—Jordan Hendricks
Master’s TAs

—Junyang Chen

— Hongkai Sun

— Vivek Narayanan
UTA

— Jake Small

CS 138

Copyright © 2016 Thomas W. Doeppner. All rights reserve

Workload

Four programs (45%)

— Chord (5%)

— Tapestry (10%)

— Raft (10%)

— PuddleStore (20%)
Four written homeworks (15%)
One in-class midterm exam (15%)
Final exam (25%)

See http://www.cs.brown.edu/courses/csci1380/doc/syllabus.pdf

CS 138

-3 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Skills Needed

+ Ability to write and debug largish programs
with threads

—CS 32o0r33

» Ability to prove a theorem
— there won’t be many
— CS 22 is helpful

* Willingness to learn a new programming
language
- Go

CS 138

-4 Copyright © 2016 Thomas W. Doeppner. All rights reserve:

Textbook

DISTRIBUTED SYSTEMS

George Coulouris
Jean Dollimore
Tim Kindberg
Gordon Blair

CS 138 -5 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Recommended, not required.

Facebook Database Replication

* Circa 2007, Facebook decided to add a second
datacenter to its operations

L’_J i — M
/ ——— ‘l [/ A 4{\ P -
A A) D AP

https://www.facebook.com/notes/facebook-engineering/scaling-out/23844338919

Why?

* Major reason: latency
— can’t go faster than the speed of light yet

e Other reasons
— scale: need to handle rapidly increasing loads
— resiliency: what if an earthquake hits CA?

— power: sometimes availability of power limits the
size of a datacenter!

Caching objects

* Facebook handles reads via memcached

Caching objects

* Cache invalidated on a new write

Adding a new Datacenter

* Initial design had a bug

Adding a new Datacenter

 Stale data could be your relationship status, or

A
)

Grades Database

CS 138

=12 Copyright © 2016 Thomas W. . Doeppner. All rights reserved.

Distributed Grades Database

A
)

CS 138 -13 Copyright© 2016 Thomas W. . Doeppner. All rights reserved.

Failure

CS 138

-14 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Byzantine Failure

®@
@ 1

A
)

CS 138 I-15 Copyright © 2016 Thomas W. Doeppner. All rights reserved

* Email
* DNS

Application Examples

* Content Distribution Networks

CS 138

1-16 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Email: Ancient History

T bt

mail twd

CS 138 1-17 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Enter UUCP: Distributed Email

mail brunix!twd

CS 138

-18 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

mail brunix!rayssd!necntc'husc6!seismo!rick

CS 138 I-19 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

On My 1989 Business Card ...

{decvax,ihnp4} !'brunix!twd

twd@cs .brown. edu

twd@browncs

CS 138 1-20 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

They were, in order, my uucp address, my internet address, and my bitnet address.

Domain Name System

* The naming system for the Internet
— highly successful
— widely distributed administration
— good for long-lived, static information
— not extensible
— simple API

CS 138 1-21 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

DNS is, by far, the most widely used and widely dispersed directory system in the world. To
be this successful it must deal with most of the concerns mentioned on the previous slide. In
particular, it must be highly available, meaning that the service must always appear to be
“up,” even if a number of components are down. Its naming facilities must allow for the
addition of an unlimited number of new names. The Internet is much too large for there to be
a single agency administrating DNS—its administration must be partitioned so that each
company, university, department, etc. can administer its own portion of the DNS name
space. Finally, it must be reasonably secure (though more work is required here).

Example

(com) (net) (cn)
O\
(ucsb) (broer
ZON
(cis) (cs)
N
(karla) (power)

CS 138 1-22 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The slide shows a very small portion of the DNS name space. Trees and subtrees are
known as domains and subdomains. Thus the tree headed by the node labeled “.” is known
as the root domain. Beneath it are a number of subdomains, known as first-level domains.
These are divided into “three-letter” domains, representing types of organizations, and “two-
letter” domains, representing countries. Contrary to popular opinion, the three-letter
domains are not restricted to US organizations. The management of the “com” domain has
recently become extremely controversial.

The administration of the name space is split into “zones of authority,” represented by the
different colors of nodes (for those looking at this in black and white: the first zone is
comprised of the nodes “.”, “edu.”, “com.”, and “net.”. Another zone is headed by “cn.”;
another is headed by “us.”. Within the “edu.” domain are the zones containing “brown.edu.”
and “cis.brown.edu.” and the one containing “ucsb.edu.” Finally, within the “brown.edu.”
domain is the zone containing “cs.brown.edu.”, “karla.cs.brown.edu.”, and
“power.cs.brown.edu.”). Each zone is separately administered. The administrators of a zone
are responsible for making certain that the parent zone knows about them, as discussed in
the next slide.

One minor syntactic issue is whether to include the “.” representing the root node in DNS
names. Strictly speaking, one should, but in practice, no one does. Thus one writes
“cs.brown.edu” rather than “cs.brown.edu.”.

Name Servers

NS: a.root-servers.net
b.root-servers.net
c.root-servers.net

T~
(com) (net) (cn)
AN _
(UCSb) @I'OWfDNSI z;cr)zg-ri‘\j:n.edu
ns1.ucsb.edu

/ /\ ~
(ns1) (cis) (Ccs) Nsicsbrownedu
O\

fullabull.cs.brown.edu
brown.edu

ns1.ucsb.edu

(karla) (power)

CS 138 1-23 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Each zone must have one or more name servers providing the database containing the
contents of the zone. The name servers for three of the zones are shown on the slide. To
follow a path to karla.cs.brown.edu starting from the root, one would first contact a name
server in the zone at the top of the root domain. This would refer to a name server at the top
of the brown.edu domain, which would in turn refer to a name server at the top of the
cs.brown.edu domain. This last name server would, presumably, know about
karla.cs.brown.edu.

There is a requirement that there be at least two name servers for each domain, each an
identical copy of the others. Preferably, at least one of the name servers should be
geographically distant from the others, and certainly on a different power system. This is to
increase the likelihood that at least one name server for a domain is up.

Replicating Name Servers

* One name server is the “primary”
» Others are “secondaries”
» Secondaries poll the primary for updates

— information is tagged with a maximum lifetime
(typically one week!)

CS 138 1-24 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

One of the name servers is designated as the primary name server; the others are
secondaries. Administrators make changes to the copy of the information in the primary; the
secondaries periodically poll the primary to acquire such modifications. No attempt is made
to keep the secondaries perfectly in sync with the primary. In fact, secondaries may continue
to function even if they've been unable to contact the primary for up to a specified period of
time, typically a week. For many databases, such a long period of no contact would be
disastrous. But the sort of information kept in the DNS name space usually does not change
very often; it is much better to obtain somewhat-out-of-date information than to obtain no
information.

Lookups

* Order of search
1. contact name server in local domain
2. contact root name server and proceed downwards
+ Caching
— results of recent queries are cached by name servers
— local machine also caches recent lookups
* Recursive vs. iterative
— recursive queries are handled completely by

recipient
— recipient sends referrals to sender of iterative
queries
CS 138 1-25 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Unlike how things are done in most file systems, lookups in the DNS name space do not
generally start with the root — if they did, the root name servers would be dramatically
overloaded. Instead, lookups start with a name server in the local zone. Only if this name
server does not have the information is a request sent to a root name server.

To further reduce the load on name servers, information obtained from them is cached,
both on name servers and on client machines. In many environments, additional caching-
only servers are employed which cache DNS information and make it available to a number
of clients.

Caching is especially feasible with DNS since, as mentioned on the previous page,
information tends to change infrequently. When a server provides information, it tags it with
a TTL (time to live) indicating how long the information may reside in the cache. Such TTLs
must be specified by the administrators setting up a server and are typically at least a day in
length.

If a server responds with information from its database, the answer is said to be
authoritative. However, it responds with information from its cache, the answer is
unauthoritative (and is tagged as such).

Another issue is who does the work: if a client makes a recursive query, the lookup is
handled completely by the first server contacted. If it doesn’t have the requested information,
it takes responsibility for contacting a root server and following the request down the tree.
Another option is the iterative query, in which a contacted server responds either with the
answer (authoritative or unauthoritative) or with a referral indicating which server to go to
next. Whether to use recursive or iterative queries is negotiated between client and server.
Root servers typically do not handle recursive queries (they’re too busy). Lower-level servers
often do.

Lookups (Example)

NS: a.root-servers.net
b.root-servers.net
c.root-servers.net

(com) (net) (ch)
7

(ucsb) @roerNm

<

ns1.ucsb.edu

brown.edu
ns1.ucsb.edu

(karla) (power)

CS 138 1-26 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

~
(ns1) (cis) ;s\‘NS: ::flta’::::vl\ﬂ:.dburown.edu

Suppose that someone at coyote.acme.com does a lookup of the address of
karla.cs.brown.edu. They will first check their local cache. If this doesn’t have it, they contact
the name server for their zone via a recursive query. This name server isn’t authoritative for
cs.brown.edu and also doesn’t have the answer in its cache, so it contacts a root server,
perhaps b.root-servers.net. This server returns a referral to the name servers for brown.edu.
Of these servers, acme.com’s server chooses nsl.ucsb.edu. This server returns a referral to
cs.brown.edu’s server — cs.brown.edu. This server has the correct answer and returns

karla.cs.brown.edu’s address.

Resource Records

* Form logical contents of each node
— a number of standard types, e.g.:

A: address of a machine

MX: mail exchanger

SOA: start of authority

PTR: pointer

NS: name server

CNAME: canonical name

— not easily extensible (everyone must agree to
changes)

CS 138 1-27 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Each node consists of a collection of information known as resource records. Each such
record contains in a particular type of information—some of the more important types are
shown on the slide. Though in principle resource records are extensible, in practice they are
not, since adding a new type requires notification (and agreement) of the entire Internet.

Some of the standard record types are listed below:

A: address of a machine (router machines have a number of addresses)
MX: mail exchanger—address of machine that handles email

SOA: start of authority—defines beginning of zone of authority: indicates
administrative boundary

PTR: pointer—points elsewhere in the name space
NS: name server—defines a name server for a domain

CNAME: canonical name—maps an alias or nickname to the real name

MX Example

* Mail is sent to “twd@karla.cs.brown.edu”

— mail-sending program queries DNS for an MX
record in karla.cs.brown.edu

— the following info is returned:

karla.cs.brown.edu preference = 10,
mail exchanger = cs.brown.edu
cs.brown.edu nameserver = cs.brown.edu
cs.brown.edu internet address = 128.148.128.2
* mail is sent to cs.brown.edu

* a name server for that domain can be found
at cs.brown.edu

+ its internet address is 128.148.128.2

CS 138 1-28 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

In this example, someone is sending email to twd@karla.cs.brown.edu. There is an MX
record for the node karla.cs.brown.edu that indicates that a “mail exchanger” can be found at
cs.brown.edu (the preference value is a priority that’s used if multiple mail exchangers are
listed — preference is given to the one with the lowest preference value; if that one is not up,
then the one with the next lowest preference value is used, etc.). As a convenience to the
caller, along with the MX record is returned the identity of the name servers for the domain
containing the mail exchanger and the address records for those name servers.

Note that including a machine name in one’s email address is a poor idea. It works in this
case, since the node karla.cs.brown.edu exists. However, it’s likely that the lifetime of
karla.cs.brown.edu is less than the lifetimes of both twd and cs.brown.edu: if karla ceases to
exist, email to twd@karla.cs.brown.edu will fail.

Administration

$ORIGIN .
$TTL 86400 ; 1 day
cs.brown.edu IN SOA ns.cs.brown.edu. root.cs.brown.edu. (
5870 ; serial
10800 ; refresh (3 hours)
3600 ; retry (1 hour)
604800 ; expire (1 week)
86400 ; minimum (1 day)

NS dns.cs.brown.edu.
NS ns1.ucsb.edu.

NS knot.brown.edu.

A 128.148.32.110

MX 10 mx.cs.brown.edu.

AFSDB 1 radio.cs.brown.edu.
$ORIGIN cs.brown.edu.

Oa CNAME cslab0a
0b CNAME cslab0b
cslab0a A 128.148.31.190
MX 10 mx
cslab0b A 128.148.33.106
MX 10 mx
mx A 128.148.32.120
CS 138 1-29 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Here’s a portion of the zone file describing the database maintained by name servers for the
cs.brown.edu domain.

Who Are You?

* I’'m 128.148.32.122

 What’s that?

CS 138

1-30

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Who Are You?

CS 138 1-31 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

The in-addr.arpa domain provides a means for doing reverse lookups: given the IP address
of a machine, this domain maps it into its DNS name. It’'s needed by servers that want to
know who is contacting them (e.g., what is the domain of the caller). The leaf nodes in the in-
addr.arpa domain contain PTR-type records referring to the actual domain names.

Who Are You?

NS: a.root-servers.net
b.root-servers.net
c.root-servers.net

NS:chia.arin.net

N
m dill.arin.net
m NS: brown.edu

dark.brown.edu

- hsl.ucsb.edu /

;

NS: ns.cs.brown.edu
dark.brown.edu
ns1.ucsb.edu

CS 138 1-32 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Resolving a name such as 122.32.148.128.in-addr.arpa, just like resolving other DNS
names, requires the cooperation of a number of authorities. Names within the in-addr.arpa
domain are resolved by the root name servers. To understand the next step in the resolution,
we must determine who should be responsible for handling the network containing the
address 128.148.32.122. Since it is a class-B address, the network identifier is the contained
in the first two bytes: 128.148. Since this network address was assigned to Brown by some
Internet authority, that same authority should be able to remember (and divulge) that this
address belongs to Brown. Originally this authority was IANA (Internet Assigned Numbers
Authority), but since the late 1990s, this authority as been split up into regional
organizations. The organization handling the US, Canada, and some Caribbean and North
Atlantic Islands is ARIN (American Registry for Internet Numbers). Thus their name servers
divulge that 128.148 is owned by Brown and refer queries to Brown’s name servers. Brown’s
name servers, in turn, know that subnet 32 is owned by the CS department and refer queries
to CS name servers. These name servers maintain the PTR records mapping host addresses
to DNS names.

$ORIGIN .
$TTL 86400

1

110
111
120
121
122

More Administration

; 1 day

32.148.128.IN-ADDR.ARPA

NS
NS
NS

PTR
PTR
PTR
PTR
PTR
PTR

IN SOA ns.cs.brown.edu. root.cs.brown.edu. (

5874 ; serial

10800 ; refresh (3 hours)
3600 ; retry (1 hour)
604800 ; expire (1 week)
86400 ; minimum (1 day)

dns.cs.brown.edu.
ns1.ucsb.edu.
knot.brown.edu.

$ORIGIN 32.148.128.IN-ADDR.ARPA.

fw-32.cs.brown.edu.
list.cs.brown.edu.
ftp.cs.brown.edu.
mx.cs.brown.edu.
dns.cs.brown.edu.
salt.cs.brown.edu.

CS 138

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

1-33

Here is a portion of the zone file for the 32.148.128.in-addr.arpa domain.

Recap: Issues

* Failure tolerance
* Decentralized management
* Speed vs. consistency

CS 138

1-34 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

\ -
kamai

CS 138 1-35 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

“Akamai's technology — at its core, applied
mathematics and algorithms — has transformed the
chaos of the Internet into a predictable, scalable, and
secure platform for business and entertainment. The
Akamai EdgePlatform comprises 73,000 servers
deployed in 70 countries that continually monitor the
Internet — traffic, trouble spots and overall conditions.
We use that information to intelligently optimize routes
and replicate content for faster, more reliable delivery.
As Akamai can handle up to 15-20% of Web traffic on
any given day, our view of the Internet is the most
comprehensive and dynamic collected anywhere.”

CS 138 1-36 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

The quote is from http://www.akamai.com/html/technology/index.html, viewed in January
2011. It’s since been updated (among other things, they've added a country).

Content Delivery

. i
nytimes.com

CS 138 1-37 Copyright © 2016 Thomas W. Doeppner. All rights reserved

Content Delivery Network

LA

N 1
edge server DAL

edge server

The Internet

it
edge server

CS 138 1-38 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

What Sort of Content?

Content aggregation
— portals, news aggregators, etc.
Static databases

— store locators, product catalogs, product
configurators

Data collection

— college applications, credit card applications,
polling sites

* Two-way data exchange
—ad serving
All of the above

CS 138 -39 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

See http://www.akamai.com/dl/technical_publications/
EdgeComputingExtendingEnterpriseApplicationstotheEdgeofthelnternet.pdf.

How Is It Done?

* Smoke and mirrors (courtesy of DNS)
+ Example (much simplified)
—resolve images.nytimes.com
— DNS returns a “CNAME”:
- images.nytimes.com.g.akamai.net
— this is resolved right to left

— akamai.net determines which akamai server is
closest to caller

—resolves “g.akamai.net” to IP address of that
server

CS 138 1-40

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Two papers describing this may be found at http://www.akamai.com/dl/
technical_publications/GloballyDistributedContentDelivery.pdf and http://www.akamai.com/dl/

t e ¢ h n i ¢ a I _ p uvu b 1 i ¢ a t
EdgeComputingExtendingEnterpriseApplicationstotheEdgeofthelnternet.pdf.

i

o

n

S

/

Dynamic Content

T edge server
edge server

CS 138 1-41 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

How streaming video is handled at Akamai is described in http://www.akamai.com/dl/
technical_publications/ATransportLayerforLiveStreaminginaContentDeliveryNetwork.pdf.

Dynamic Content
Streaming Video

) g

set reflector

set reflector

———y
/.\/ edge server

set refleg

R
CS 138 nytl mes.com 1-42 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Dynamic Content
Streaming Video

edge-%eer edge'%erver edge'%eer

multicast Region

——_—
set reflector

set reflector

set reflector edge server

ey
CS 138 nyt| mes.com 1-43 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Introduction to Go

Where is Go used?

Google, of course!

Docker (Container management)
CloudFlare (Content Delivery Network)
Digital Ocean (VM hosting)

Dropbox (Cloud storage/file sharing)

... and many more!

Why use Go?

e Easy concurrency w/ goroutines (green
threads)

e Garbage collection and memory safety

Libraries provide easy RPC

e Channels for communication between
goroutines

: Simple Program

package main
import (
"fmt"
"os"
)
func main() {
for count := 1; count < 100; count++ {
if count%2 == @ {
fmt.Printf("Found even number: %v\n", count)
} else {
fmt.Fprintf(os.Stderr, "Not an even number: %v\n", count)
}
}
}

e No parentheses
e “for { }” will loop forever
e “for condition { }” avoids initialization/afterthought, similar to a while loop

Example: Concurrency

package main
import (
"t
"time"
)
func main() {
go func() {
time.Sleep(time.Second * 5)
fmt.Printf("1")
O
go func() {
fmt.Printf("2")
$40)
time.Sleep(time.Second * 10)
¥
e “go” keyword executes following function call in a separate goroutine
e Goroutines don’t necessarily run in another OS thread
e Refer to GOMAXPROCS in “runtime” package

: Channels

package main

import (
"fmt"
"time"
)
func message(send, recv chan string, str string) {
for {
send <- str
S := <-recv
fmt.Println(s)
}
¥

func main() {
pingChan := make(chan string, 1)
pongChan := make(chan string, 1)
go message(pongChan, pingChan, "ping")
go message(pingChan, pongChan, "pong")
time.Sleep(time.Second)

}

e The channels are buffered so the goroutines don’t wait on each other

Editing Go

e Syntax highlighting and formatting:
o Vim
o Emacs
o Sublime
o Eclipse

e Gotags for editors with ctags support

e Links available at:
http://cs.brown.edu/courses/cs138/s15/syllabus.html

Tips

"go fmt’ - format source code

"godoc’ - view Go docs in localhost browser
‘runtime/pprof’ - profiling package

"go test’ and go tool cover’ - test
coverage

e goimports’ - add/remove imports as
needed

Learning Go

Project O: Whatsup?
Effective Go
golang.org/doc
tour.golang.org

PuddleStore

* A very distributed file system
— thousands of computers

- all over the world
* (or at least throughout the SunLab)

- no common administration
— each holds pieces of a few files
- pieces replicated on many computers
+ Based on OceanStore
—and its Pond prototype

CS 138 1-53 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

A File

Indirect Bld

)ck

/

Data Block 1

T

Data Block 4

Data Block 2

Data Block 3

CS 138

1-54

Copyright © 2016 Thomas W. Doeppner. All rights reserved.

A Distributed File

ERiib sl
S eSS e
pELiP LD
ERiibLLLL
SS9 (19919
bEL L
IELEEL LI
plliE LI
HYSaaaae
LTI

Making It Work (sort of ...)

Data Block 1 C .. c ..
0x8726df52 el "l‘[
Ox2a74ca56 0x9da6f453
ok @k
i 0xd53b7621 0x529e02f8

» Assign each block a unique n-bit ID
— crypto hash of its contents

» Assign each computer a unique n-bit ID
« Store block at computer that has closest ID

* Route requests for that block to that
computer

CS 138 1-56 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

Overlay Networks

Chord

» Distributed hash tables meet overlay
networks

— hash both keys and node IP addresses into
identifiers

- m-bit identifiers, where m is large enough
so that probability of collision is negligible

— lookups resolved in O(log n) messages

— adding or deleting a node requires O(log? n)
messages

* You implement it in the first programming
assignment

CS 138 1-58 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

We explain Chord in detail next week. The time bounds given are “with high probability.”

Making It (really) WoOrk (with high probabiity)

Data Block 1 = .. C . 0x87a6df52 locations:
0x8726df52 el !l Cusabre2t
0x2a74ca56 0x9dabf45
ah @
Block 1 Al Al
0xd53b7621 0x529e02f8

« Assign each block a unique n-bit ID
— crypto hash of its contents
» Assign each computer a unique n-bit ID
« Store multiple copies of blocks each at a number of computers
« Store block addresses at computer that has closest ID
— addresses are cached at other nodes
* Route requests for that block to that computer
— request is redirected to nearest computer that has copy of block

CS 138 1-59 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

Tapestry

» Distributed object location and routing
(DOLR)

—you implement it in the second programming
assignment

CS 138 1-60 Copyright © 2016 Thomas W. Doeppner. Al rights reserved.

We explain Tapestry in detail next week as well. It is the overlay network used by PuddleStore.

More PuddleStore Issues

* How are files named?

— filelD = CryptoHash(file name)
* How are files updated?

— carefully ...

CS 138

1-61 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Copy on Write (1)

Version Node

Indirect Blgck Indlirect Blgck
Modified
Data Block 1 Data ck 4 Data Block 4
A
/ Modified
Data Block 2 Data Block 3 Data Block 3

CS 138 1-62 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Copy on Write (2)

Version Node

Indirect Blgck Indlirect Blgck
Modified
Data Block 1 Data ck 4 Data Block 4
A
/ Modified
Data Block 2 Data Block 3 Data Block 3

CS 138 1-63 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

More Redundancy

CS 138

1-64 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Raft

Multiple clients update file concurrently
Each communicates with different servers
— servers propagate changes to all copies

How do we ensure that all copies are updated
in the same order?

— order matters ...
Raft
— third programming assignment

CS 138

1-65 Copyright © 2016 Thomas W. Doeppner. All rights reserved.

Final PuddleStore

* You put all this together
—we give you the B design
- if you implement it completely: you get a B

—if you improve it (reasonably well): you get an A
(and it may count as a capstone)

- you’re encouraged to discuss your design
with classmates

CS 138

1-66 Copyright © 2016 Thomas W. Doeppner. All rights reserve:

