CS 138: Byzantine Consensus
Byzantine Generals Problem

Commanding General

Attack!

 Lieutenant General

 Attack!

 Lieutenant General
Byzantine Generals Problem

Retreat!

Commanding General

Lieutenant General

Lieutenant General

Lieutenant General
Byzantine Generals Problem

• C1: All loyal lieutenant generals obey the same order
• C2: If the commanding general is loyal, then every loyal lieutenant general obeys the order he sends
Byzantine Agreement Problem

• All generals co-equal
 – each general i has a value $v(i)$ he sends to the others

1) Every loyal general must obtain the same information $v(1), \ldots, v(n)$

2) If the ith general is loyal, then the value he sends must be used by every loyal general as the value of $v(i)$
Byzantine Generals Problem

Attack!

Retreat!
Byzantine Generals Problem

He said Attack!

He said Retreat!

Attack!

Retreat!
Byzantine Generals Problem

Attack!

He said Attack!

He said Retreat!
Summing Up

- Byzantine Generals Problem with 3 Generals, at most one of whom is a traitor ([3,1]BGP)
 - no solution satisfying C1 and C2
Message-Passing Assumptions

• Every message sent is delivered correctly
• The receiver of a message knows who sent it
• The absence of a message can be detected
[4, 0] Byzantine Generals Problem

Attack!

Attack!

Attack!
[4,1] Byzantine Generals Problem

Attack!

Retreat!

He said Attack!

He said Retreat!

He said Attack!

He said Retreat!

He said Attack!

He said Retreat!
[4, 1] Byzantine Generals Problem

Attack!

He said Attack!

He said Retreat!

He said Retreat!

He said Attack!

He said Attack!

He said Attack!
Some Details

• Each general receives messages u, v, and w from the others
 – if no message is received, interpret its lack as “retreat”

• Loyal general takes its order to be $\text{majority}(u, v, w)$
 – if no majority: retreat
Summing Up

• Byzantine Generals Problem with 4 Generals, one of whom is a traitor ([4,1]BGP)
 – solvable
Theorem

- If N is the number of generals and T is the number of traitors, then there is a solution to the Byzantine Generals Problem iff

$$N > 3T$$
Proof

• Only if:
 – assume a solution exists for \(N \leq 3T \)
 - 3T Albanian generals can cope with T traitors
 – three Byzantine generals now take advantage of the Albanian approach to solve \([3,1]\)BGP
 - commander simulates Albanian commander plus at most T-1 lieutenant generals
 - two lieutenant generals each simulate at most T Albanian lieutenant generals
 – loyal Byzantine generals simulate loyal Albanians
 – traitorous Byzantine general does whatever it takes to mess things up
 - effectively simulates actions of up to T traitorous Albanian lieutenant generals
Proof (Continued)

• By C1: all loyal Albanian lieutenant generals obey same order
 – thus loyal Byzantine lieutenant generals obey orders obeyed by simulated Albanians

• By C2: if Albanian commander is loyal, then all loyal Albanian lieutenant generals obey his order
 – thus if Byzantine commander is loyal, his order is that of Albanian commander
Albanian Simulation

Albanian commander

Albanian
commander

Albanian
commander
Proof (Half Done)

• This gives us a method to solve \([3,1]\)BGP
 – which can’t be done …
Proof (remainder)

• If:
 – Show that a solution exists if $N > 3T$
 - $T=1$
 • done
 - $T>1$
 • hard
 – next few slides
[7,2]BGP

• Case 1: the commander is loyal
 – six lieutenants receive order \(v \)
 – four report it to one another correctly
 – two (traitors) do not
 – correct outcome determined by majority
 – (that was easy!)
Case 2: the commander is a traitor (and so is someone else)

– not so easy …

– if the commander is a traitor, there is only one traitor among the lieutenants, so they can work out agreement assuming only one traitor

- this is the Byzantine agreement problem, which means each lieutenant runs the algorithm
The Algorithm, part 1

- BGP(0) // no traitors
 1) the commander sends his value to each lieutenant
 2) each lieutenant uses the value he receives from the commander
The Algorithm, part 2

• BGP(m) // m traitors

 1) the commander sends his value to each lieutenant

 2) for each \(i \), let \(v_i \) be the value lieutenant \(i \) receives from the commander. Lieutenant \(i \) acts as the commander in BGP(m-1) to send \(v_i \) to each of the \(n-2 \) other lieutenants

 3) for each \(i \) and each \(k \neq i \), let \(v_k \) be the value lieutenant \(i \) received from lieutenant \(k \) in step 2 (using BGP(m-1)). Lieutenant \(i \) uses the value \(\text{majority}(v_1, \ldots, v_{n-1}) \)
$[4, 1]$
[7,1]: Commander is Loyal

C

0

L1

1v0

L2

2v0

L3

3v0

L4

4v0

L5

5v0

L6

6v0
[7,1]: Commander is a Traitor
[7,2]: ... and a Lieutenant is a Traitor
BGP(m, gens, v, path, sender) {
 if (m > 0) {
 // tell others what was received
 for each g in gens−me
 sendmsg(g, BGP, m−1, gens−me, v, me∙path, me)
 // wait till all resulting communication is complete
 when defined((∀g∈gens) meĝvg∙path)
 // compute consensus value
 mev_senderpath = majority(v, (∀g∈gens) mevg∙path)
 } else { // m == 0
 mev_senderpath = v
 }
}
Complexity

• How expensive is the algorithm for BGP?
 – $T+1$ rounds of messages
 – $O(N^T)$ messages, for N generals and T traitors

• Can we do better?
 – $T+1$ rounds are required
 – polynomial algorithm exists, but for $N > 4T$
 - next few slides …
An Even Better Algorithm

• Agreement on one of two values
• T traitors; $T+1$ phases; $N > 4T$
• In each phase, a different general is the commander
 – all generals broadcast values to one another
 – recipients determine “majority”
 - commander’s value is tie-breaker
• In at least one phase, the commander is loyal
 – consensus reached in this phase
 – doesn’t change in subsequent phases
for (phase = 1; phase <= T+1; phase++) {
 // round 1: executed by each general
 broadcast value to all others
 await value v_j from each general G_j
 majority = value that occurs > $N/2$ times
 default value otherwise
 mult = number of times majority occurs
Details (2)

// round 2: executed by each general
if (this is G_{phase})
 // G_{phase} is (temporary) commander
 broadcast majority to all other generals
else
 receive tiebreaker from G_{phase}
 if (mult > N/2 + T)
 value = majority // super majority
 else
 value = tiebreaker

}
Correctness

• Assume commander in phase p is loyal
 – its value x (from round 1) is either majority or default value
 – it broadcasts x in round 2
• Claim 1: all loyal generals (including phase p commander) agree on value
 – proof: soon
• Claim 2: if all loyal generals agree on value at beginning of phase i, they agree at end of phase i
 – proof: soon
• After phase $T+1$, all loyal generals agree
Claim 1

• All loyal generals (including phase p commander) agree on value
 – consider all pairs of loyal lieutenants G_i and G_k
 – they can set their values in one of three ways:
 - both set their value to the (super) majority
 • super majority must involve more than $n/2$ loyal lieutenants
 • any two such majorities must have a member in common
 – thus G_i and G_k have same value
 • G_p must have heard from same majority
 – it also has same value
Claim 1 (continued)

- both set their value to the commander’s tie-breaking rule
 • since commander is loyal, both now agree with commander

- G_i sets value to (super) majority; G_k to tie-breaking rule
 • since super majority agrees with G_i, more than $n/2$ loyal nodes agree, thus G_p agrees
 • G_p value is adopted by G_k
 – i.e., this case is same as first case
Claim 2

- If all loyal generals agree on value at beginning of phase i, they agree at end of phase i
 - all generals receive consensus value from a majority of others in round 1
 - thus all loyal generals stay with this value in round 2
Complexity

- $T+1$ phases
- $n \cdot (n-1)$ messages in round 1
- $n-1$ messages in round 2
Signed Messages

Attack!

Attack!

Attack!

Attack!
Signed Messages

Attack!

Retreat!

Attack!

Retreat!
Asynchronous Communication

• Processes may respond to messages at arbitrary times
 – can’t use timeouts to determine failures
• BGP has no solution
 – non-responding general might respond at any time with whatever response counters the decision made assuming it was missing
 – in practice this is surmountable
Surmounting Failure

- Recover quickly
 - state kept in non-volatile memory
- Detect failure
 - enforced timeouts
- Be unpredictable
 - randomized algorithm