Remember the definition of NP: languages decidable in polynomial time. I.e.:

$$NP = \bigcup_{k=1}^{\infty} NTIME(n^k)$$

Language Funtime

Here are some fun languages:

1. **SAT** = \{ \langle \Phi \rangle \mid \Phi(x_1...x_k) \text{ is a Boolean formula, and } \exists a_1...a_k \text{ such that } \Phi(a_1...a_k) = T \}\n
2. **3SAT** = \{ \langle \Phi \rangle \mid \Phi(x_1...x_k) \text{ is a 3-CNF, and } \exists a_1...a_k \text{ such that } \Phi(a_1...a_k) = T \}\n
3. **Hampath** = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph, } s \text{ and } t \text{ are vertices } \in V(G), \text{ and there is a path from } s \text{ to } t \text{ that visits all } v \in V(G) \text{ exactly once } \}\n
4. **Composites** = \{ x \mid x \text{ is a composite integer } \}\n
5. **GraphIso** = \{ \langle G, H \rangle \mid G, H \text{ are graphs and } \exists \pi \text{, a permutation } V(G) \to V(G) \text{ such that } H = \pi(G) \}\n
6. **Clique** = \{ \langle G, k \rangle \mid G \text{ is a graph with a clique}^1 \text{ of size } k \}\n
7. **VertexCover** = \{ \langle G, k \rangle \mid G \text{ is a graph with a vertex cover}^2 \text{ of size } k \}\n
8. **IndependentSet** =\{ \langle G, k \rangle \mid G \text{ is a graph with an independent set}^3 \text{ of size } k \}\n
Exempli Gratia

SAT

We show the NTM decider for SAT:

On input \langle \Phi \rangle:
- Nondeterministically select an assignment \((a_1, a_2...a_k) \).
- Evaluate \(\Phi(a_1, a_2...a_k) \).
- Accept if \(\Phi = T \), reject otherwise

Runtime: The runtime is clearly polynomial.

Correctness: If \(\Phi \in SAT \), then there will be an accepting choice for \((a_1, a_2...a_k) \), and we will accept. If \(\Phi \notin SAT \), then no selection of \((a_1, a_2...a_k) \) will result in True, and there will be no accepting branch of our NTM.

1. a clique of \(G \) is a subset \(C \), of \(V(G) \) such that \(\forall (u, v) \in C, (u, v) \in E(G) \)
2. a vertex cover of \(G \) is a subset \(C \), of \(V(G) \) such that \(\forall (u, v) \in E(G), u \in C \text{ or } v \in C \)
3. an independent set of \(G \) is a subset \(C \), of \(V(G) \) such that \(\forall (u, v) \in C, (u, v) \notin E(G) \)
HamPath

We show the NTM decider for HAMPath:
On input \(<G,s,t>\):
 Non-deterministically select an ordering of all the vertices in \(G\), \((v_1,v_2...v_k)\), such that \(v_1 = s\) and \(v_k = t\)
 Check that each \((v_i,v_{i+1})\) is an edge in \(G\).
 Accept if so, reject otherwise

Runtime: The runtime is clearly polynomial in the number of vertices in the graph, and we can represent a graph on the tape as a list of vertices and edges, so the runtime is also polynomial in input.
Correctness: If \(<G,s,t>\in\text{HAMPath}\), then there will be an accepting choice for \((v_1,v_2...v_k)\), and we will accept. If \(<G,s,t>\not\in\text{HAMPath}\), then no selection of \((v_1,v_2...v_k)\) will be accepted, and we reject.

Composites

We show the NTM decider for COMPOSITES:
On input integer \(<x>\):
 Non-deterministically select some integer \(i\) \(1 < i \leq \sqrt{x}\)
 Check that \(i\) divides \(x\).
 Accept if so, reject otherwise

Runtime: The runtime is clearly polynomial in the representation of \(x\), which takes \(\log(x)\) bit. Note that we can’t select all values from 1 to \(x\) because that would be exponential in \(\log(x)\).
Correctness: P. Obv.

Graph Isomorphism

We show the NTM decider for GraphIso:
On input \(<G,H>\):
 Non-deterministically select a permutation \(\pi\) of all the vertices in \(G\)
 Check that each \(\pi(G) = H\)
 Accept if so, reject otherwise

Runtime: Poly Correctness: Correct.

Another definition of NP

We can consider a deterministic definition of NP.
Def: A Verifier \(V\) for a language \(A\) is a Turing Machine such that \(A = \{w | \exists c \text{ such that } V(w,c) \text{ accepts or rejects in polynomial time}\}\)
V’s runtime is measured in the size of \(w \), not in \(w \) and \(c \). The language \(A \) is poly-time-verifiable if \(\exists V \), a poly-time verifier for \(A \).

We propose a definition, \(NP_2 = \{ A \mid A \text{ is poly-time-verifiable} \} \)

Now consider a Verifier for CLIQUE:

On input \(w = \langle G, k \rangle \), and \(c \), a \(k \)-sized subset of \(V(G) \), Verify that for all \((u, v) \in c \), \((u, v) \in E(G) \).

Runtime is clearly polynomial, as we simply check each pair of vertices in the subset against the edge-set.

Thm: \(NP = NP_2 \).

Proof: Forward Direction: Suppose \(L \in NP \) (meaning that it has a poly-time NTM, \(N \), that decides it), then \(\exists \text{Verifier} V \) for it:

On input \(\langle w, c \rangle \): Simulate \(N \) on input \(w \), using \(c \) to dictate \(N \)'s choices. If \(N \) accepts, accept, else reject.

Other Direction: Suppose \(L \in NP_2 \) (meaning that it has a poly-time Verifier), then \(\exists \text{N} \), a poly-time NTM that decides it:

On input \(w \): Nondeterministically select \(c \) Run \(V(w, c) \). Accept if it accepts, reject otherwise.

So we can say that \(P = \) languages decidable in polynomial time and \(NP = \) languages verifiable in polynomial time.

Poly-Time Reducibility

\(f \) is a poly-time reducible function if it is computable by a poly-time TM.

\(A \preceq_p B : \exists \) a poly-time computable function \(f \) such that \(w \in A \) iff \(f(w) \in B \).

Example: Let us poly-time reduce CLIQUE to INDEPENDENTSET:

On \(\langle G, k \rangle \):

Let \(G' \) have the same vertices as \(G \), and let the edges of \(G', E' = (u, v) \) such that \((u, v) \notin E(G) \).

Output \(\langle G', k \rangle \).

Runtime: It poly.

Correctness: If \(G' \) has a independent set of size \(k \), then inverting the edges means that that same set would be totally connected (because it was totally unconnected before). If \(G \) has a clique of size \(k \), then inverting the edges means all the vertices in the clique are totally disconnected if we invert the edges.

\footnote{That \(c \) represents the runtime of \(V \), and thus is polynomial in the input, \(w \). Therefore you only need to consider polynomial lengths for \(c \).}
Example: Let us poly-time reduce \textsc{IndependentSet} to \textsc{VertexCover}:

On $< G, k >$:
- Output $< G, |V(G)| - k >$.

Runtime: You just did a subtraction....
Correctness: If there is an independent set of size k, then all the vertices not in the independent set form a vertex cover by definition (so we have a vertex cover of size $V(G) - k$). If there is not an independent set of size k, then there are not $V(G) - k$ vertices that form a vertex cover.

\textbf{IMPORTANT THEOREM STUFF}

\textbf{Thm} If $A \leq_p B$ and $B \in P$, then $A \in P$

\textbf{Proof:} Let M be a poly-time decider for B
Then the poly-time decider for A first computes $w' = f(w)$ and runs M on w'.
This is clearly polynomial time.

\textbf{NP-Complete:} L is NP-Complete if
1. $L \in \text{NP}$
2. $\forall A \in \text{NP}, A \leq_p L$